skip to main content


Title: Variational Quantum Circuits to Prepare Low Energy Symmetry States
We explore how to build quantum circuits that compute the lowest energy state corresponding to a given Hamiltonian within a symmetry subspace by explicitly encoding it into the circuit. We create an explicit unitary and a variationally trained unitary that maps any vector output by ansatz A(α→) from a defined subspace to a vector in the symmetry space. The parameters are trained varitionally to minimize the energy, thus keeping the output within the labelled symmetry value. The method was tested for a spin XXZ Hamiltonian using rotation and reflection symmetry and H2 Hamiltonian within Sz=0 subspace using S2 symmetry. We have found the variationally trained unitary gives good results with very low depth circuits and can thus be used to prepare symmetry states within near term quantum computers.  more » « less
Award ID(s):
1955907
NSF-PAR ID:
10336135
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Symmetry
Volume:
14
Issue:
3
ISSN:
2073-8994
Page Range / eLocation ID:
457
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The quantum simulation of quantum chemistry is a promising application of quantum computers. However, forNmolecular orbitals, the$${\mathcal{O}}({N}^{4})$$O(N4)gate complexity of performing Hamiltonian and unitary Coupled Cluster Trotter steps makes simulation based on such primitives challenging. We substantially reduce the gate complexity of such primitives through a two-step low-rank factorization of the Hamiltonian and cluster operator, accompanied by truncation of small terms. Using truncations that incur errors below chemical accuracy allow one to perform Trotter steps of the arbitrary basis electronic structure Hamiltonian with$${\mathcal{O}}({N}^{3})$$O(N3)gate complexity in small simulations, which reduces to$${\mathcal{O}}({N}^{2})$$O(N2)gate complexity in the asymptotic regime; and unitary Coupled Cluster Trotter steps with$${\mathcal{O}}({N}^{3})$$O(N3)gate complexity as a function of increasing basis size for a given molecule. In the case of the Hamiltonian Trotter step, these circuits have$${\mathcal{O}}({N}^{2})$$O(N2)depth on a linearly connected array, an improvement over the$${\mathcal{O}}({N}^{3})$$O(N3)scaling assuming no truncation. As a practical example, we show that a chemically accurate Hamiltonian Trotter step for a 50 qubit molecular simulation can be carried out in the molecular orbital basis with as few as 4000 layers of parallel nearest-neighbor two-qubit gates, consisting of fewer than 105non-Clifford rotations. We also apply our algorithm to iron–sulfur clusters relevant for elucidating the mode of action of metalloenzymes.

     
    more » « less
  2. Abstract

    The variational quantum eigensolver is one of the most promising approaches for performing chemistry simulations using noisy intermediate-scale quantum (NISQ) processors. The efficiency of this algorithm depends crucially on the ability to prepare multi-qubit trial states on the quantum processor that either include, or at least closely approximate, the actual energy eigenstates of the problem being simulated while avoiding states that have little overlap with them. Symmetries play a central role in determining the best trial states. Here, we present efficient state preparation circuits that respect particle number, total spin, spin projection, and time-reversal symmetries. These circuits contain the minimal number of variational parameters needed to fully span the appropriate symmetry subspace dictated by the chemistry problem while avoiding all irrelevant sectors of Hilbert space. We show how to construct these circuits for arbitrary numbers of orbitals, electrons, and spin quantum numbers, and we provide explicit decompositions and gate counts in terms of standard gate sets in each case. We test our circuits in quantum simulations of the$${H}_{2}$$H2and$$LiH$$LiHmolecules and find that they outperform standard state preparation methods in terms of both accuracy and circuit depth.

     
    more » « less
  3. We present a new quantum adiabatic theorem that allows one to rigorously bound the adiabatic timescale for a variety of systems, including those described by originally unbounded Hamiltonians that are made finite-dimensional by a cutoff. Our bound is geared towards the qubit approximation of superconducting circuits and presents a sufficient condition for remaining within the2n-dimensional qubit subspace of a circuit model ofnqubits. The novelty of this adiabatic theorem is that, unlike previous rigorous results, it does not contain2nas a factor in the adiabatic timescale, and it allows one to obtain an expression for the adiabatic timescale independent of the cutoff of the infinite-dimensional Hilbert space of the circuit Hamiltonian. As an application, we present an explicit dependence of this timescale on circuit parameters for a superconducting flux qubit and demonstrate that leakage out of the qubit subspace is inevitable as the tunnelling barrier is raised towards the end of a quantum anneal. We also discuss a method of obtaining a2n×2neffective Hamiltonian that best approximates the true dynamics induced by slowly changing circuit control parameters.

    This article is part of the theme issue ‘Quantum annealing and computation: challenges and perspectives’.

     
    more » « less
  4. Quantum chemistry is a promising application for noisy intermediate-scale quantum (NISQ) devices. However, quantum computers have thus far not succeeded in providing solutions to problems of real scientific significance, with algorithmic advances being necessary to fully utilise even the modest NISQ machines available today. We discuss a method of ground state energy estimation predicated on a partitioning the molecular Hamiltonian into two parts: one that is noncontextual and can be solved classically, supplemented by a contextual component that yields quantum corrections obtained via a Variational Quantum Eigensolver (VQE) routine. This approach has been termed Contextual Subspace VQE (CS-VQE), but there are obstacles to overcome before it can be deployed on NISQ devices. The problem we address here is that of the ansatz - a parametrized quantum state over which we optimize during VQE. It is not initially clear how a splitting of the Hamiltonian should be reflected in our CS-VQE ansätze. We propose a 'noncontextual projection' approach that is illuminated by a reformulation of CS-VQE in the stabilizer formalism. This defines an ansatz restriction from the full electronic structure problem to the contextual subspace and facilitates an implementation of CS-VQE that may be deployed on NISQ devices. We validate the noncontextual projection ansatz using a quantum simulator, with results obtained herein for a suite of trial molecules. 
    more » « less
  5. Abstract

    We prove that$${{\,\textrm{poly}\,}}(t) \cdot n^{1/D}$$poly(t)·n1/D-depth local random quantum circuits with two qudit nearest-neighbor gates on aD-dimensional lattice withnqudits are approximatet-designs in various measures. These include the “monomial” measure, meaning that the monomials of a random circuit from this family have expectation close to the value that would result from the Haar measure. Previously, the best bound was$${{\,\textrm{poly}\,}}(t)\cdot n$$poly(t)·ndue to Brandão–Harrow–Horodecki (Commun Math Phys 346(2):397–434, 2016) for$$D=1$$D=1. We also improve the “scrambling” and “decoupling” bounds for spatially local random circuits due to Brown and Fawzi (Scrambling speed of random quantum circuits, 2012). One consequence of our result is that assuming the polynomial hierarchy ($${{\,\mathrm{\textsf{PH}}\,}}$$PH) is infinite and that certain counting problems are$$\#{\textsf{P}}$$#P-hard “on average”, sampling within total variation distance from these circuits is hard for classical computers. Previously, exact sampling from the outputs of even constant-depth quantum circuits was known to be hard for classical computers under these assumptions. However the standard strategy for extending this hardness result to approximate sampling requires the quantum circuits to have a property called “anti-concentration”, meaning roughly that the output has near-maximal entropy. Unitary 2-designs have the desired anti-concentration property. Our result improves the required depth for this level of anti-concentration from linear depth to a sub-linear value, depending on the geometry of the interactions. This is relevant to a recent experiment by the Google Quantum AI group to perform such a sampling task with 53 qubits on a two-dimensional lattice (Arute in Nature 574(7779):505–510, 2019; Boixo et al. in Nate Phys 14(6):595–600, 2018) (and related experiments by USTC), and confirms their conjecture that$$O(\sqrt{n})$$O(n)depth suffices for anti-concentration. The proof is based on a previous construction oft-designs by Brandão et al. (2016), an analysis of how approximate designs behave under composition, and an extension of the quasi-orthogonality of permutation operators developed by Brandão et al. (2016). Different versions of the approximate design condition correspond to different norms, and part of our contribution is to introduce the norm corresponding to anti-concentration and to establish equivalence between these various norms for low-depth circuits. For random circuits with long-range gates, we use different methods to show that anti-concentration happens at circuit size$$O(n\ln ^2 n)$$O(nln2n)corresponding to depth$$O(\ln ^3 n)$$O(ln3n). We also show a lower bound of$$\Omega (n \ln n)$$Ω(nlnn)for the size of such circuit in this case. We also prove that anti-concentration is possible in depth$$O(\ln n \ln \ln n)$$O(lnnlnlnn)(size$$O(n \ln n \ln \ln n)$$O(nlnnlnlnn)) using a different model.

     
    more » « less