skip to main content

Search for: All records

Award ID contains: 1955907

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Quantum computing has the potential to revolutionize computing, but its significant sensitivity to noise requires sophisticated error correction and mitigation. Traditionally, noise on the quantum device is characterized directly through qubit and gate measurements, but this approach has drawbacks in that it does not adequately capture the effect of noise on realistic multi-qubit applications. In this paper, we simulate the relaxation of stationary quantum states on a quantum computer to obtain a unique spectroscopic fingerprint of the computer’s noise. In contrast to traditional approaches, we obtain the frequency profile of the noise as it is experienced by the simulated stationary quantum states. Data from multiple superconducting-qubit IBM processors show that noise generates a bath within the simulation that exhibits both colored noise and non-Markovian behavior. Our results provide a direction for noise mitigation but also suggest how to use noise for quantum simulations of open systems.

    more » « less
  2. Abstract

    We present a quantum algorithm for data classification based on the nearest-neighbor learning algorithm. The classification algorithm is divided into two steps: Firstly, data in the same class is divided into smaller groups with sublabels assisting building boundaries between data with different labels. Secondly we construct a quantum circuit for classification that contains multi control gates. The algorithm is easy to implement and efficient in predicting the labels of test data. To illustrate the power and efficiency of this approach, we construct the phase transition diagram for the metal-insulator transition ofVO2, using limited trained experimental data, whereVO2is a typical strongly correlated electron materials, and the metallic-insulating phase transition has drawn much attention in condensed matter physics. Moreover, we demonstrate our algorithm on the classification of randomly generated data and the classification of entanglement for various Werner states, where the training sets can not be divided by a single curve, instead, more than one curves are required to separate them apart perfectly. Our preliminary result shows considerable potential for various classification problems, particularly for constructing different phases in materials.

    more » « less
  3. Abstract

    The road to computing on quantum devices has been accelerated by the promises that come from using Shor’s algorithm to reduce the complexity of prime factorization. However, this promise hast not yet been realized due to noisy qubits and lack of robust error correction schemes. Here we explore a promising, alternative method for prime factorization that uses well-established techniques from variational imaginary time evolution. We create a Hamiltonian whose ground state encodes the solution to the problem and use variational techniques to evolve a state iteratively towards these prime factors. We show that the number of circuits evaluated in each iteration scales as$$O(n^{5}d)$$O(n5d), wherenis the bit-length of the number to be factorized anddis the depth of the circuit. We use a single layer of entangling gates to factorize 36 numbers represented using 7, 8, and 9-qubit Hamiltonians. We also verify the method’s performance by implementing it on the IBMQ Lima hardware to factorize 55, 65, 77 and 91 which are greater than the largest number (21) to have been factorized on IBMQ hardware.

    more » « less
  4. Abstract

    Non‐classical features like interference are already being harnessed to control the output of chemical reactions. However, quantum entanglement which is an equally enigmatic many‐body quantum correlation can also be used as a powerful resource yet has eluded explicit attention. In this report, an experimental scheme under the crossed beam molecular dynamical setup, with the F + HD reaction, is proposed aiming to study the possible influence of entanglement within reactant pairs on the angular features of the product distribution. The aforesaid reaction has garnered interest recently, as an unusual horseshoe shape pattern in the product (HF) distribution was observed, which has been attributed to the coupling of spin and orbital degrees of freedom. An experimental scheme is proposed aiming to study the possible influence of entanglement on the necessity for the inclusion of such spin–orbit characteristics, under circumstances wherein the existence of entanglement and spin–orbit interaction is simultaneously detectable. The attainable results are further numerically simulated highlighting specific patterns corresponding to various possibilities. Such studies if extended can provide unforeseen mechanistic insight into analogous reactions, too, from the lens of quantum information.

    more » « less
  5. We explore how to build quantum circuits that compute the lowest energy state corresponding to a given Hamiltonian within a symmetry subspace by explicitly encoding it into the circuit. We create an explicit unitary and a variationally trained unitary that maps any vector output by ansatz A(α→) from a defined subspace to a vector in the symmetry space. The parameters are trained varitionally to minimize the energy, thus keeping the output within the labelled symmetry value. The method was tested for a spin XXZ Hamiltonian using rotation and reflection symmetry and H2 Hamiltonian within Sz=0 subspace using S2 symmetry. We have found the variationally trained unitary gives good results with very low depth circuits and can thus be used to prepare symmetry states within near term quantum computers. 
    more » « less