skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1955907

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Adaptive Variational Quantum Dynamics (AVQD) algorithms offer a promising approach to providing quantum‐enabled solutions for systems treated within the purview of open quantum dynamical evolution. In this study, the unrestricted‐vectorization variant of AVQD is employed to simulate and benchmark various non‐unitarily evolving systems. Exemplification of how construction of an expressible ansatz unitary and the associated operator pool can be implemented to analyze examples such as the Fenna–Matthews–Olson complex (FMO) and even the permutational invariant Dicke model of quantum optics. Furthermore, an efficient decomposition scheme is shown for the ansatz used, which can extend its applications to a wide range of other open quantum system scenarios in near future. In all cases the results obtained are in excellent agreement with exact numerical computations that bolsters the effectiveness of this technique. The successful demonstrations pave the way for utilizing this adaptive variational technique to study complex systems in chemistry and physics, like light‐harvesting devices, thermal, and opto‐mechanical switches, to name a few. 
    more » « less
  2. Abstract How fast a state of a system converges to a stationary state is one of the fundamental questions in science. Some Markov chains and random walks on finite groups are known to exhibit the non-asymptotic convergence to a stationary distribution, called the cutoff phenomenon. Here, we examine how quickly a random quantum circuit could transform a quantum state to a Haar-measure random quantum state. We find that random quantum states, as stationary states of random walks on a unitary group, are invariant under the quantum Fourier transform (QFT). Thus the entropic uncertainty of random quantum states has balanced Shannon entropies for the computational basis and the QFT basis. By calculating the Shannon entropy for random quantum states and the Wasserstein distances for the eigenvalues of random quantum circuits, we show that the cutoff phenomenon occurs for the random quantum circuit. It is also demonstrated that the Dyson-Brownian motion for the eigenvalues of a random unitary matrix as a continuous random walk exhibits the cutoff phenomenon. The results here imply that random quantum states could be generated with shallow random circuits. 
    more » « less
  3. Abstract Most existing quantum algorithms are discovered accidentally or adapted from classical algorithms, and there is the need for a systematic theory to understand and design quantum circuits. Here we develop a unitary dependence theory to characterize the behaviors of quantum circuits and states in terms of how quantum gates manipulate qubits and determine their measurement probabilities. Compared to the conventional entanglement description of quantum circuits and states, the unitary dependence picture offers more practical information on the measurement and manipulation of qubits, easier generalization to many-qubit systems, and better robustness upon partitioning of the system. The unitary dependence theory can be applied to systematically understand existing quantum circuits and design new quantum algorithms. 
    more » « less
  4. Abstract Quantum computing has the potential to revolutionize computing, but its significant sensitivity to noise requires sophisticated error correction and mitigation. Traditionally, noise on the quantum device is characterized directly through qubit and gate measurements, but this approach has drawbacks in that it does not adequately capture the effect of noise on realistic multi-qubit applications. In this paper, we simulate the relaxation of stationary quantum states on a quantum computer to obtain a unique spectroscopic fingerprint of the computer’s noise. In contrast to traditional approaches, we obtain the frequency profile of the noise as it is experienced by the simulated stationary quantum states. Data from multiple superconducting-qubit IBM processors show that noise generates a bath within the simulation that exhibits both colored noise and non-Markovian behavior. Our results provide a direction for noise mitigation but also suggest how to use noise for quantum simulations of open systems. 
    more » « less
  5. Abstract We present a quantum algorithm for data classification based on the nearest-neighbor learning algorithm. The classification algorithm is divided into two steps: Firstly, data in the same class is divided into smaller groups with sublabels assisting building boundaries between data with different labels. Secondly we construct a quantum circuit for classification that contains multi control gates. The algorithm is easy to implement and efficient in predicting the labels of test data. To illustrate the power and efficiency of this approach, we construct the phase transition diagram for the metal-insulator transition ofVO2, using limited trained experimental data, whereVO2is a typical strongly correlated electron materials, and the metallic-insulating phase transition has drawn much attention in condensed matter physics. Moreover, we demonstrate our algorithm on the classification of randomly generated data and the classification of entanglement for various Werner states, where the training sets can not be divided by a single curve, instead, more than one curves are required to separate them apart perfectly. Our preliminary result shows considerable potential for various classification problems, particularly for constructing different phases in materials. 
    more » « less
  6. Abstract The road to computing on quantum devices has been accelerated by the promises that come from using Shor’s algorithm to reduce the complexity of prime factorization. However, this promise hast not yet been realized due to noisy qubits and lack of robust error correction schemes. Here we explore a promising, alternative method for prime factorization that uses well-established techniques from variational imaginary time evolution. We create a Hamiltonian whose ground state encodes the solution to the problem and use variational techniques to evolve a state iteratively towards these prime factors. We show that the number of circuits evaluated in each iteration scales as$$O(n^{5}d)$$ O ( n 5 d ) , wherenis the bit-length of the number to be factorized anddis the depth of the circuit. We use a single layer of entangling gates to factorize 36 numbers represented using 7, 8, and 9-qubit Hamiltonians. We also verify the method’s performance by implementing it on the IBMQ Lima hardware to factorize 55, 65, 77 and 91 which are greater than the largest number (21) to have been factorized on IBMQ hardware. 
    more » « less
  7. Abstract Non‐classical features like interference are already being harnessed to control the output of chemical reactions. However, quantum entanglement which is an equally enigmatic many‐body quantum correlation can also be used as a powerful resource yet has eluded explicit attention. In this report, an experimental scheme under the crossed beam molecular dynamical setup, with the F + HD reaction, is proposed aiming to study the possible influence of entanglement within reactant pairs on the angular features of the product distribution. The aforesaid reaction has garnered interest recently, as an unusual horseshoe shape pattern in the product (HF) distribution was observed, which has been attributed to the coupling of spin and orbital degrees of freedom. An experimental scheme is proposed aiming to study the possible influence of entanglement on the necessity for the inclusion of such spin–orbit characteristics, under circumstances wherein the existence of entanglement and spin–orbit interaction is simultaneously detectable. The attainable results are further numerically simulated highlighting specific patterns corresponding to various possibilities. Such studies if extended can provide unforeseen mechanistic insight into analogous reactions, too, from the lens of quantum information. 
    more » « less
  8. Phase transitions happen at critical values of the controlling parameters, such as the critical temperature in classical phase transitions, and system critical parameters in the quantum case. However, true criticality happens only at the thermodynamic limit, when the number of particles goes to infinity with constant density. To perform the calculations for the critical parameters, a finite-size scaling approach was developed to extrapolate information from a finite system to the thermodynamic limit. With the advancement in the experimental and theoretical work in the field of ultra-cold systems, particularly trapping and controlling single atomic and molecular systems, one can ask: do finite systems exhibit quantum phase transition? To address this question, finite-size scaling for finite systems was developed to calculate the quantum critical parameters. The recent observation of a quantum phase transition in a single trapped 171 Yb+ ion indicates the possibility of quantum phase transitions in finite systems. This perspective focuses on examining chemical processes at ultra-cold temperatures, as quantum phase transitions—particularly the formation and dissociation of chemical bonds—are the basic processes for understanding the whole of chemistry. 
    more » « less