Minoritized and underrepresented students have historically experienced prejudice and discrimination within and outside of their classrooms, negatively impacting their educational outcomes. Research has illustrated that student academic and social success can be improved through instructors creating inclusive classroom environments that facilitate a sense of belonging. The impact of creating more inclusive environments is well-studied, however actionable guidance on how to do this, especially in more technical disciplines such as engineering, is lacking. This study aims to address this gap by developing an inclusive engineering classroom practices menu along with accompanying tools for faculty seeking to improve their classrooms. The first year of this study, as detailed at ASEE’s Annual Conference in June 2022, saw the development of the inclusive engineering classroom practices menu as well as the pilot of the inclusive learning communities for faculty across three partner institutions. The student and faculty assessment plans were also curated and involved both a student and faculty survey as well as the opportunity for students and faculty to engage in short-format interviews. This presentation will focus on the survey and interview data that has been collected in the second year of the project and the website that has been developed to further engage faculty and other institutions and partners interested in the study. This second year of this study will also see the creation of a decision matrix to aid faculty and instructors to further promote and support the implementation of inclusive practices in engineering classrooms. The continued refinement of the menu and creation of both the website and decision matrix are the next steps in the development of an inclusive classrooms toolkit that can be used across all engineering classrooms and curriculums.
more »
« less
How higher education instructors conceptualize diversity: A phenomenographic study
Higher education institutions around the globe have increasingly made the commitment to diversity. Instructors play an integral role in creating inclusive learning environments. Guided by sociopolitical perspectives on learning, we ask: How do higher education instructors conceptualize diversity? How do these conceptions inform curriculum and instruction? Interview data from 30 instructors teaching at minority-serving institutions in the United States revealed three distinct conceptions of diversity defined by variations in five aspects: student identities, intelligence mindset, pedagogical motivation, learning environment, and legitimized membership. The essentialist conception is based on students having inherently determinate traits described by preexisting universal categories. The functionalist conception differentiates students by academic performance. The existentialist conception acknowledges that students have unique experiences that impact the learning process. Our results indicate that while instructors acknowledge different student features and have varying understanding for why diversity is important, some conceptions of diversity do not necessarily suggest an inclusive culture.
more »
« less
- PAR ID:
- 10336188
- Date Published:
- Journal Name:
- Proceedings of the 16 th International Conference of the Learning Sciences - ICLS 2022
- ISSN:
- 1573-4552
- Page Range / eLocation ID:
- 289-296
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The computing education research community now has at least 40 years of published research on teaching ethics in higher education. To examine the state of our field, we present a systematic literature review of papers in the Association for Computing Machinery computing education venues that describe teaching ethics in higher-education computing courses. Our review spans all papers published to SIGCSE, ICER, ITiCSE, CompEd, Koli Calling, and TOCE venues through 2022, with 100 papers fulfilling our inclusion criteria. Overall, we found a wide variety in content, teaching strategies, challenges, and recommendations. The majority of the papers did not articulate a conception of “ethics,” and those that did used many different conceptions, from broadly applicable ethical theories to social impact to specific computing application areas (e.g., data privacy and hacking). Instructors used many different pedagogical strategies (e.g., discussions, lectures, assignments) and formats (e.g., stand-alone courses, incorporated within a technical course). Many papers identified measuring student knowledge as a particular challenge, and 59% of papers included mention of assessments or grading. Of the 69% of papers that evaluated their ethics instruction, most used student self-report surveys, course evaluations, and instructor reflections. While many papers included calls for more ethics content in computing, specific recommendations were rarely broadly applicable, preventing a synthesis of guidelines. To continue building on the last 40 years of research and move toward a set of best practices for teaching ethics in computing, our community should delineate our varied conceptions of ethics, examine which teaching strategies are best suited for each, and explore how to measure student learning.more » « less
-
Preliminary model for student ownership of projects written by Dimitri R. Dounas-Frazer, Laura Ríos, and H. J. Lewandowski In many upper-division lab courses, instructors implement multiweek student-led projects. During such projects, students may design and carry out experiments, collect and analyze data, document and report their findings, and collaborate closely with peers and mentors. To better understand cognitive, social, and affective aspects of projects, we conducted an exploratory investigation of student ownership of projects. Ownership is a complex construct that refers to, e.g., students' willingness and ability to make strategic decisions about their project. Using data collected through surveys and interviews with students and instructors at five institutions, we developed a preliminary model for student ownership of projects. Our model describes ownership as a relationship between student and project. This relationship is characterized by student interactions with the project during three phases: choice of topic, execution of experiment, and synthesis of results. Herein, we explicate our model and demonstrate that it maps well onto students' and instructors' conceptions of ownership and ideas presented in prior literature. Physics Education Research Conference 2019 Part of the PER Conference series Provo, UT: July 24-25, 2019more » « less
-
Price, Rebecca (Ed.)To enhance equity and diversity in undergraduate biology, recent research in biology education focuses on best practices that reduce learning barriers for all students and improve academic performance. However, the majority of current research into student experiences in introductory biology takes place at large, predominantly White institutions. To foster contextual knowledge in biology education research, we harnessed data from a large research coordination network to examine the extent of academic performance gaps based on demographic status across institutional contexts and how two psychological factors, test anxiety and ethnicity stigma consciousness, may mediate performance in introductory biology. We used data from seven institutions across three institution types: 2-year community colleges, 4-year inclusive institutions (based on admissions selectivity; hereafter, inclusive), and 4-year selective institutions (hereafter, selective). In our sample, we did not observe binary gender gaps across institutional contexts, but found that performance gaps based on underrepresented minority status were evident at inclusive and selective 4-year institutions, but not at community colleges. Differences in social psychological factors and their impacts on academic performance varied substantially across institutional contexts. Our findings demonstrate that institutional context can play an important role in the mechanisms underlying performance gaps.more » « less
-
Abstract Diversity, equity, and inclusion (DEI) are interconnected with bioengineering, yet have historically been absent from accreditation standards and curricula. Toward educating DEI-competent bioengineers and meeting evolving accreditation requirements, we took a program-level approach to incorporate, catalog, and assess DEI content through the bioengineering undergraduate program. To support instructors in adding DEI content and inclusive pedagogy, our team developed a DEI planning worksheet and surveyed instructors pre- and post-course. Over the academic year, 74% of instructors responded. Of responding instructors, 91% described at least one DEI curricular content improvement, and 88% incorporated at least one new inclusive pedagogical approach. Based on the curricular adjustments reported by instructors, we grouped the bioengineering-related DEI content into five DEI competency categories: bioethics, inclusive design, inclusive scholarship, inclusive professionalism, and systemic inequality. To assess the DEI content incorporation, we employed direct assessment via course assignments, end-of-module student surveys, end-of-term course evaluations, and an end-of-year program review. When asked how much their experience in the program helped them develop specific DEI competencies, students reported a relatively high average of 3.79 (scale of 1 = “not at all” to 5 = “very much”). Additionally, based on student performance in course assignments and other student feedback, we found that instructors were able to effectively incorporate DEI content into a wide variety of courses. We offer this framework and lessons learned to be adopted by programs similarly motivated to train DEI-competent engineering professionals and provide an equitable, inclusive education.more » « less
An official website of the United States government

