Abstract Circulating Tumor Cells (CTCs), which migrate from original sites in a body to distant organs through blood, are a key factor in cancer detection. Emerging Label-free techniques owing to their inherent advantage to preserve characteristics of sorted cells and low consumption of samples can be promising to the prediction of cancer progression and metastasis research. Deterministic Lateral Displacement (DLD) is one of the label-free separation techniques employing a specific arrangement of micro-posts for continuous separation of suspended cells in a buffer based on the size of cells. Separation based solely on size is challenging since the size distributions of CTCs might overlap with those of normal blood cells. To address this problem, DLD can be combined with dielectrophoresis (DEP) technique which is the phenomenon of particle movement in a non-uniform electric field owing to the polarization effect. Although, DLD devices employ the laminar flow in low Reynolds number (Re) fluid flow due to predictability of such flow regimes, they should be improved to work in higher Re flow regime so as to attain high throughput devices. In this paper, a particle tracing simulation is developed to study the effects of different post shapes, shift fraction of micropost arrays, and dielectrophoresis forces on separation of CTCs from peripheral blood cells. Our numerical model and results provide a groundwork for design and fabrication of high-throughput DLD-DEP devices for improvement of CTC separation.
more »
« less
Separation of Non-Viable Chinese Hamster Ovary (CHO) Cells Using Dielectrophoresis in a Deterministic Lateral Displacement Ratchet
Abstract Chinese hamster ovary (CHO) cell is the most widely used mammalian cell line for commercial production of therapeutic protein. Any presence of non-viable cells in culture medium may adversely affect subsequent functionality of these proteins. Therefore, separation of non-viable cells from suspending medium is critical in biopharmaceutical and biomedical sectors. One such method termed Deterministic Lateral Displacement has already shown promising capabilities in separating cells based on the cell size difference by taking advantage of the predictable flow laminae. However, in cases where size overlaps between viable and non-viable cells are present, separation based solely on size suffers and high-resolution separation techniques are required. Dielectrophoresis, one of the most widely used nonlinear electro-kinetic mechanism, has the potential to manipulate the same size cells depending on the dielectric properties of individual cells. In this work, we demonstrated that a DLD device can be combined with a frequency-based AC electric field to perform high resolution continuous separation of non-viable CHO cells from the viable or productive cells. The behavior of the coupled DLD-DEP device is further investigated by employing numerical simulation to check the effect of geometrical parameters of the DLD arrays, velocities of the flow field and required applied voltages. A moderate row shift fraction with velocity 700μm/s provided a good separation behavior without any trapping. The cell viability was also ensured by maintaining proper electric field which otherwise may cause cell loss due to ion leakage. Our developed numerical model and presented results lay the groundwork for design and fabrication of high resolution DLD-DEP microchips for enhanced separation of viable and nonviable cells.
more »
« less
- PAR ID:
- 10336286
- Date Published:
- Journal Name:
- Proceedings of ASME 2020 International Mechanical Engineering Congress and Exposition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A simple, low‐cost, three‐dimensional (3D) lab‐on‐a‐foil microfluidic device for dielectrophoretic separation of circulating tumor cells (CTCs) is designed and constructed. Disposable thin films are cut by xurography and microelectrode array are made with rapid inkjet printing. The multilayer device design allows the studying of spatial movements of CTCs and red blood cells (RBCs) under dielectrophoresis (DEP). A numerical simulation was performed to find the optimum driving frequency of RBCs and the crossover frequency for CTCs. At the optimum frequency, RBCs were lifted 120 µm inz‐axis direction by DEP force, and CTCs were not affected due to negligible DEP force. By utilizing the displacement difference, the separation of CTCs (modeled with A549 lung carcinoma cells) from RBCs inz‐axis direction was achieved. With the nonuniform electric field at optimized driving frequency, the RBCs were trapped in the cavities above the microchannel, whereas the A549 cells were separated with a high capture rate of 86.3% ± 0.2%. The device opens not only the possibility for 3D high‐throughput cell separation but also for future developments in 3D cell manipulation through rapid and low‐cost fabrication.more » « less
-
Abstract Circulating tumor cells (CTCs) have been proven to have significant prognostic, diagnostic, and clinical values in early‐stage cancer detection and treatment. The efficient separation of CTCs from peripheral blood can ensure intact and viable CTCs and can, thus, give proper genetic characterization and drug innovation. In this study, continuous and high‐throughput separation of MDA‐231 CTCs from overlapping sized white blood cells (WBCs) is achieved by modifying inertial cell focusing with dielectrophoresis (DEP) in a single‐stage microfluidic platform by numeric simulation. The DEP is enabled by embedding interdigitated electrodes with alternating field control on a serpentine microchannel to avoid creating two‐stage separation. Rather than using the electrokinetic migration of cells which slows down the throughput, the system leverages the inertial microfluidic flow to achieve high‐speed continuous separation. The cell migration and cell positioning characteristics are quantified through coupled physics analyses to evaluate the effects of the applied voltages and Reynolds numbers (Re) on the separation performance. The results indicate that the introduction of DEP successfully migrates WBCs away from CTCs and that separation of MDA‐231 CTCs from similar sized WBCs at a highReof 100 can be achieved with a low voltage of magnitude 4 ×106 V/m. Additionally, the viability of MDA‐231 CTCs is expected to be sustained after separation due to the short‐term DEP exposure. The developed technique could be exploited to design active microchips for high‐throughput separation of mixed cell beads despite their significant size overlap, using DEP‐modified inertial focusing controlled simply by adjusting the applied external field.more » « less
-
Beskok, A. (Ed.)Dielectrophoresis (DEP) is a powerful tool for label-free sorting of cells, even those with subtle differences in morphological and dielectric properties. Nevertheless, a major limitation is that most existing DEP techniques can efficiently sort cells only at low throughputs (<1 mL h−1). Here, we demonstrate that the integration of a three-dimensional (3D) coupled hydrodynamic-DEP cell pre-focusing module upstream of the main DEP sorting region enables cell sorting with a 10-fold increase in throughput compared to conventional DEP approaches. To better understand the key principles and requirements for high-throughput cell separation, we present a comprehensive theoretical model to study the scaling of hydrodynamic and electrostatic forces on cells at high flow rate regimes. Based on the model, we show that the critical cell-to-electrode distance needs to be ≤10 µm for efficient cell sorting in our proposed microfluidic platform, especially at flow rates ≥ 1 mL h−1. Based on those findings, a computational fluid dynamics model and particle tracking analysis were developed to find optimum operation parameters (e.g., flow rate ratios and electric fields) of the coupled hydrodynamic-DEP 3D focusing module. Using these optimum parameters, we experimentally demonstrate live/dead K562 cell sorting at rates as high as 10 mL h−1 (>150,000 cells min−1) with 90% separation purity, 85% cell recovery, and no negative impact on cell viability.more » « less
-
Abstract Circulating tumor cells (CTCs) are shed from primary tumors, circulate in the bloodstream and are capable of initiating metastasis at distant anatomical sites. The detection and molecular characterization of CTCs are pivotal for early-stage cancer diagnosis and prognosis. Recently, microfluidic technology has achieved significant progress in the separation of cells from complex and heterogeneous mixtures for many biomedical applications. Conventional microfluidic platforms exploit the difference in size between the particles to achieve separation, which makes them ineffective for sorting overlapping-sized CTCs. To address this issue, we propose a method using a spiral channel for label-free, and high throughput separation of CTCs coupling Dielectrophoresis (DEP) with inertial microfluidics. A numerical model has been developed to investigate the separation effectiveness of the device over a range of electrical voltage and flow rates. The presented channel is shown to effectively isolate similar-sized CTCs from the white blood cells (WBCs) in a single-stage separation process. Subsequently, optimum working parameters to enhance separation efficiency have been proposed. The hybrid microfluidic device can provide valuable insight into the development of a robust, inexpensive, and efficient platform for cell separation with reduced analysis time for future cancer research and treatment.more » « less
An official website of the United States government

