skip to main content


Title: Processed 2-D multichannel seismic reflection data from Oneida Lake, New York (2019)
In July 2019, approximately 217 km of 2-D multichannel seismic reflection data were collected along 27 profiles on Oneida Lake, New York using a 120 channel Seamux™ solid-towed array marine streamer with a 3.125 m group interval and a maximum offset of ~400 meters. Data were originally recorded in SEG-D format on a NTRS2 recording system. Navigational data and ancillary data (ship speed, depth, etc.) were fed into the external header of each field file. The seismic source was a 4x10 in3 Bolt 2800 LLX airgun array and was towed at ~1 meter depth to allow for venting of seismic source air bubbles. Gun pressures varied from 1500 to 2000 PSI. Air guns were fired every 6.25 m distance using two high resolution (Trimble) GPS receivers for navigation. This geometry provided 30-fold seismic coverage with a common midpoint (CMP) interval of 1.56 m. Record length is 2 seconds and the sample rate is 0.25 ms. The following processing steps were applied to the dataset using SeisSpace/ProMAX Software. Data were initially reviewed in shot mode and noisy traces were edited. Geometry was applied using source and receiver offsets with group and shot intervals, and data were sorted into the CMP domain. Stacking velocities were picked using a combination of velocity semblance plots and constant velocity stacks applied to CMP supergathers. For the constant velocity stacks, supergathers were constructed from 51 CMPs and analyzed in increments of 100 CMPs. Once time-velocity pairs were selected, normal moveout was applied to the full profile data set and the data were stacked.Nested Ormsby bandpass filters of 110-135-1500-1700 Hz and 40-70-1100-1300 Hz were applied to the stacked datasets. Ormsby filter frequencies were picked by executing a careful parameter test where frequencies were altered incrementally until the ideal filter was produced. A post-stack F-K filter was applied to remove steeply dipping noise, and a careful comparison of F-K filtered profiles and raw profiles was conducted. A post-stack Kirchhoff time migration with a 200 ms bottom taper was applied using the RMS stacking velocities picked for each seismic profile. The data files are in SEG-Y format and were generated as part of a project called P2C2: A High Resolution Paleoclimate Archive of Termination I in Oneida Lake and Glacial Lake Iroquois Sediments. Funding was provided through NSF grant EAR18-04460 to Syracuse University.  more » « less
Award ID(s):
1804460
NSF-PAR ID:
10336291
Author(s) / Creator(s):
;
Publisher / Repository:
Interdisciplinary Earth Data Alliance (IEDA)
Date Published:
Edition / Version:
1
Subject(s) / Keyword(s):
["Seismic:Reflection:MCS"]
Format(s):
Medium: X Other: application/seismic-segy
Sponsoring Org:
National Science Foundation
More Like this
  1. In July 2019, approximately 217 km of 2-D multichannel seismic reflection data were collected along 27 profiles on Oneida Lake, New York using a 120 channel Seamux™ solid-towed array marine streamer with a 3.125 m group interval and a maximum offset of ~400 meters. Data were recorded in SEG-D format on a NTRS2 recording system. The seismic source was a 4x10 in3 Bolt 2800 LLX airgun array and was towed at ~1 meter depth to allow for venting of seismic source air bubbles. Gun pressures varied from 1500 to 2000 PSI. Air guns were fired every 6.25 m distance using two high resolution (Trimble) GPS receivers for navigation. This geometry provided 30-fold seismic coverage with a common midpoint (CMP) interval of 1.56 m. Record length is 2 seconds and the sample rate is 0.25 ms. These raw field shot data files are in SEG-D format, bundled by seismic line. The files were acquired as part of a project called P2C2: A High Resolution Paleoclimate Archive of Termination I in Oneida Lake and Glacial Lake Iroquois Sediments. Funding was provided through NSF grant EAR18-04460 to Syracuse University. 
    more » « less
  2. This data set consists of raw multi-channel seismic reflection (MCS) data in SEG-Y format, collected in July 2022 along the continental slope of the Campeche Bank aboard R/V Justo Sierra. The research objective was to map the detailed stratigraphy of sediment drift deposits to explore the history of the Loop Current and its climatic implications. We used the portable high-resolution seismic acquisition system operated by Scripps Institution of Oceanography, which comprised a source array of two 45 cubic inches G.I. air-guns and a GeoEel streamer with 120 channels at a spacing of 6.25 m. The air-gun array was fired every 12.5 m and was towed at a depth of 3 m. Data was recorded using the Geometrics seismic recording system with sample rate of 0.5 ms and recording length of 4 ms. A 50-ms delay was created during each shot as a buffer between the timing pulse that starts the recording and the trigger pulse that fires the air-guns. A total of 11 seismic lines were acquired including two long strike lines, five dip lines, two tilted dip lines and two short transition lines. The shot spacing was not exactly 12.5 m during the first three lines (1001-1003) due to system glitches, therefore, it is necessary to merge navigation with SEG-Y headers to ensure accurate processing of these lines. Detailed acquisition parameters and cruise incidents are described in the associated documents. Funding for this work was provided through NSF awards OCE-1928888 and OCE-1450528, and CONTEX award 2018-38A. 
    more » « less
  3. With the ongoing discussion of Earth structure under West Antarctica and how it relates to the extension and volcanism of the area, we explore the possibility of a hydrated or thermally perturbed mantle underneath the region. Using P-wave receiver functions, we focus on the Mantle Transition Zone (MTZ) and how its thickness fluctuates from the global average (240-260 km). Prior studies have explored the West Antarctic regions of Marie Byrd Land and the West Antarctic Rift, but we expand this to include ~3-5 years of recent, additional seismic data from the Amundsen Sea and Pine Island Bay regions. Several years of additional data from the Ronne-Fichtner Ice Shelf, Ellsworth Land, and Marie Byrd Land regions will help provide a more complete picture of the mantle transition zone. Data for this study was obtained from IRIS for earthquakes of a 5.5 magnitude or greater. We use an iterative, time domain deconvolution method, filtered with Gaussian widths of 0.5, 0.75, and 1.0. All events within their respective Gaussian filter have undergone quality check by removing waveforms that have lower than 85% fit and visually checking for clear outliers. We migrate the receiver functions to depth and stack, using both single station stacking and common conversion point (CCP) stacking. We migrate the CCP stacks assuming both 1D (AK-135) and 3D velocity models throughout the region. Preliminary results from single-station stacks beneath the Thurston Island and Amundsen Sea regions suggest that the MTZ thickness is similar to the global average and the depth to the transition zone appears to be depressed, with average transition zone boundaries appearing around 430 and 680 km. If the MTZ is thinner than the global average, it may be an indication for high temperature thermal anomalies or a plume under West Antarctica that may help explain the history of extension and uplift there. These results could be useful for glacial isostatic adjustment and/or geothermal heat flux models that attempt to understand ice sheet history and stability. 
    more » « less
  4. SUMMARY

    Cross-correlations of ambient seismic noise are widely used for seismic velocity imaging, monitoring and ground motion analyses. A typical step in analysing noise cross-correlation functions (NCFs) is stacking short-term NCFs over longer time periods to increase the signal quality. Spurious NCFs could contaminate the stack, degrade its quality and limit its use. Many methods have been developed to improve the stacking of coherent waveforms, including earthquake waveforms, receiver functions and NCFs. This study systematically evaluates and compares the performance of eight stacking methods, including arithmetic mean or linear stacking, robust stacking, selective stacking, cluster stacking, phase-weighted stacking, time–frequency phase-weighted stacking, Nth-root stacking and averaging after applying an adaptive covariance filter. Our results demonstrate that, in most cases, all methods can retrieve clear ballistic or first arrivals. However, they yield significant differences in preserving the phase and amplitude information. This study provides a practical guide for choosing the optimal stacking method for specific research applications in ambient noise seismology. We evaluate the performance using multiple onshore and offshore seismic arrays in the Pacific Northwest region. We compare these stacking methods for NCFs calculated from raw ambient noise (referred to as Raw NCFs) and from ambient noise normalized using a one-bit clipping time normalization method (referred to as One-bit NCFs). We evaluate six metrics, including signal-to-noise ratios, phase dispersion images, convergence rate, temporal changes in the ballistic and coda waves, relative amplitude decays with distance and computational time. We show that robust stacking is the best choice for all applications (velocity tomography, monitoring and attenuation studies) using Raw NCFs. For applications using One-bit NCFs, all methods but phase-weighted and Nth-root stacking are good choices for seismic velocity tomography. Linear, robust and selective stacking methods are all equally appropriate choices when using One-bit NCFs for monitoring applications. For applications relying on accurate relative amplitudes, the linear, robust, selective and cluster stacking methods all perform well with One-bit NCFs. The evaluations in this study can be generalized to a broad range of time-series analysis that utilizes data coherence to perform ensemble stacking. Another contribution of this study is the accompanying open-source software package, StackMaster, which can be used for general purposes of time-series stacking.

     
    more » « less
  5. Multichannel-seismic data were collected in August and September 2021 over the Northern Chukchi Borderland and Central Canada Basin from the R/V Sikuliaq. The data were acquired with two 520 cu inch GI airguns and a 200 meters (32 channels) streamer. The preliminary processing started by screening the bad traces caused by the broken hydrophone and misfires during acquisition. Bandpass and F-K filtering were applied to the traces. The bandpass filtering eliminates energy that is outside of the band of energy emitted by the airguns. The F-K filter is implemented by bringing the signal amplitude into the frequency-wavenumber (f-k) domain to exclude the reflection signal with the noise amplitude. Our seismic data contains multiples that interfere with the primary image, obscuring the data. These multiples usually occur when seismic signals are trapped in the water column. We utilized surface related multiple elimination (SRME) method to attenuate the multiples. Surface related multiple elimination is applied by developing multiple prediction models from the primary reflection and generating the high order and low order multiple to subtract or eliminate the multiple. We find the SRME method is improved adjusting the sediment velocity and the filter length. The bandpass and F-K filter show a significant improvement in the signal coherence. The SRME method is effective in improving the clarity and continuity of the primary reflectors. Profiles were generated by performing post-stack time migration. Post-stack migration was applied by summing all the reflected signals into a CDP gather, strengthen the coherent reflectors, then migrating or relocating the dipping reflector to its actual location and eliminating the diffraction effects. We have tied our interpretation to the previous project acquired in 2011 from the southern part of the Chukchi Borderland. The 2011 survey sailed over wells drilled by Shell in the late 80s on the Chukchi Shelf and directly tied the reflectors with the stratigraphy. The processed multichannel-seismic profiles from the Northern Chukchi Borderland show horsts with grabens continuous with those imaged from RV Langseth in 2011. These basins are filled with syn-rift and post-rift stratigraphy. Stratigraphic sequences imaged on Northwind Ridge are segmented by multiple unconformities and minor structures. The origin of these unconformities may be related to the opening of Canada Basin and multiple generations of glacial ice contact over the bathymetric high. The seismic profile on Canada basin showed a prominent feature recognized as a basement, which seems to support the interpretation of the extinct mid-ocean ridge as an unsegmented, ultra-slow spreading ridge. 
    more » « less