skip to main content


Title: Technical note: AQMEII4 Activity 1: evaluation of wet and dry deposition schemes as an integral part of regional-scale air quality models
Abstract. We present in this technical note the research protocol for phase 4 of theAir Quality Model Evaluation International Initiative (AQMEII4). Thisresearch initiative is divided into two activities, collectively having threegoals: (i) to define the current state of the science with respect torepresentations of wet and especially dry deposition in regional models,(ii) to quantify the extent to which different dry depositionparameterizations influence retrospective air pollutant concentration andflux predictions, and (iii) to identify, through the use of a common set ofdetailed diagnostics, sensitivity simulations, model evaluation, andreduction of input uncertainty, the specific causes for the current range ofthese predictions. Activity 1 is dedicated to the diagnostic evaluation ofwet and dry deposition processes in regional air quality models (describedin this paper), and Activity 2 to the evaluation of dry deposition pointmodels against ozone flux measurements at multiple towers with multiyearobservations (to be described in future submissions as part of the specialissue on AQMEII4). The scope of this paper is to present the scientificprotocols for Activity 1, as well as to summarize the technical informationassociated with the different dry deposition approaches used by theparticipating research groups of AQMEII4. In addition to describing allcommon aspects and data used for this multi-model evaluation activity, mostimportantly, we present the strategy devised to allow a common process-levelcomparison of dry deposition obtained from models using sometimes verydifferent dry deposition schemes. The strategy is based on adding detaileddiagnostics to the algorithms used in the dry deposition modules of existingregional air quality models, in particular archiving diagnostics specific to land use–land cover(LULC) and creating standardized LULC categories tofacilitate cross-comparison of LULC-specific dry deposition parameters andprocesses, as well as archiving effective conductance and effective flux asmeans for comparing the relative influence of different pathways towards thenet or total dry deposition. This new approach, along with an analysis ofprecipitation and wet deposition fields, will provide an unprecedentedprocess-oriented comparison of deposition in regional air quality models.Examples of how specific dry deposition schemes used in participating modelshave been reduced to the common set of comparable diagnostics defined forAQMEII4 are also presented.  more » « less
Award ID(s):
1848372
PAR ID:
10336337
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
21
Issue:
20
ISSN:
1680-7324
Page Range / eLocation ID:
15663 to 15697
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study evaluates the impact of land surface models (LSMs) and urban heterogeneity [using local climate zones (LCZs)] on air temperature simulated by the Weather Research and Forecasting model (WRF) during a regional extreme event. We simulated the 2017 heatwave over Europe considering four scenarios, using WRF coupled with two LSMs (i.e., Noah and Noah‐MP) with default land use/land cover (LULC) and with LCZs from the World Urban Database and Access Portal Tools (WUDAPT). The results showed that implementing the LCZs significantly improves the WRF simulations of the daily temperature regardless of the LSMs. Implementing the LCZs altered the surface energy balance partitioning in the simulations (i.e., the sensible heat flux was reduced and latent heat flux was increased) primarily due to a higher vegetation feedback in the LCZs. The changes in the surface flux translated into an increase in the simulated 2‐m relative humidity and 10‐m wind speed as well as changed air temperature within cities section and generated a temperature gradient that affected the temperatures beyond the urban regions. Despite these changes, the factor separation analysis indicated that the impact of LSM selection was more significant than the inclusion of LCZs. Interestingly, the lowest bias in temperature simulations was achieved when WRF was coupled with the Noah as the LSM and used WUDAPT as the LULC/urban representation.

     
    more » « less
  2. Abstract. Dry deposition is a major sink of tropospheric ozone.Increasing evidence has shown that ozone dry deposition actively linksmeteorology and hydrology with ozone air quality. However, there is littlesystematic investigation on the performance of different ozone drydeposition parameterizations at the global scale and how parameterizationchoice can impact surface ozone simulations. Here, we present the results ofthe first global, multidecadal modelling and evaluation of ozone drydeposition velocity (vd) using multiple ozone dry depositionparameterizations. We model ozone dry deposition velocities over 1982–2011using four ozone dry deposition parameterizations that are representative ofcurrent approaches in global ozone dry deposition modelling. We useconsistent assimilated meteorology, land cover, and satellite-derived leafarea index (LAI) across all four, such that the differences in simulatedvd are entirely due to differences in deposition model structures orassumptions about how land types are treated in each. In addition, we usethe surface ozone sensitivity to vd predicted by a chemical transportmodel to estimate the impact of mean and variability of ozone dry depositionvelocity on surface ozone. Our estimated vd values from four differentparameterizations are evaluated against field observations, and whileperformance varies considerably by land cover types, our results suggestthat none of the parameterizations are universally better than the others.Discrepancy in simulated mean vd among the parameterizations isestimated to cause 2 to 5 ppbv of discrepancy in surface ozone in theNorthern Hemisphere (NH) and up to 8 ppbv in tropical rainforests in July,and up to 8 ppbv in tropical rainforests and seasonally dry tropical forestsin Indochina in December. Parameterization-specific biases based onindividual land cover type and hydroclimate are found to be the two maindrivers of such discrepancies. We find statistically significant trends inthe multiannual time series of simulated July daytime vd in allparameterizations, driven by warming and drying (southern Amazonia, southernAfrican savannah, and Mongolia) or greening (high latitudes). The trend inJuly daytime vd is estimated to be 1 % yr−1 and leadsto up to 3 ppbv of surface ozone changes over 1982–2011. The interannual coefficient ofvariation (CV) of July daytime mean vd in NH is found to be5 %–15 %, with spatial distribution that varies with the dry depositionparameterization. Our sensitivity simulations suggest this can contributebetween 0.5 to 2 ppbv to interannual variability (IAV) in surface ozone, butall models tend to underestimate interannual CV when compared to long-termozone flux observations. We also find that IAV in some dry depositionparameterizations is more sensitive to LAI, while in others it is more sensitiveto climate. Comparisons with other published estimates of the IAV ofbackground ozone confirm that ozone dry deposition can be an important partof natural surface ozone variability. Our results demonstrate the importanceof ozone dry deposition parameterization choice on surface ozone modellingand the impact of IAV of vd on surface ozone, thus making a strong casefor further measurement, evaluation, and model–data integration of ozone drydeposition on different spatiotemporal scales. 
    more » « less
  3. Land is a natural resource that humans have utilized for life and various activities. Land use/land cover change (LULCC) has been of great concern to many countries over the years. Some of the main reasons behind LULCC are rapid population growth, migration, and the conversion of rural to urban areas. LULC has a considerable impact on the land-atmosphere/climate interactions. Over the past two decades, numerous studies conducted in LULC have investigated various areas of the field of LULC. However, the assemblage of information is missing for some aspects. Therefore, to provide coherent guidance, a literature review to scrutinize and evaluate many studies in particular topical areas is employed. This research study collected approximately four hundred research articles and investigated five (5) areas of interest, including (1) LULC definitions; (2) classification systems used to classify LULC globally; (3) direct and indirect changes of meta-studies associated with LULC; (4) challenges associated with LULC; and (5) LULC knowledge gaps. The synthesis revealed that LULC definitions carried vital terms, and classification systems for LULC are at the national, regional, and global scales. Most meta-studies for LULC were in the categories of direct and indirect land changes. Additionally, the analysis showed significant areas of LULC challenges were data consistency and quality. The knowledge gaps highlighted a fall in the categories of ecosystem services, forestry, and data/image modeling in LULC. Core findings exhibit common patterns, discrepancies, and relationships from the multiple studies. While literature review as a tool showed similarities among various research studies, our results recommend researchers endeavor to perform further synthesis in the field of LULC to promote our overall understanding, since research investigations will continue in LULC. 
    more » « less
  4. Climate models show that soil moisture and its subseasonal fluctuations have important impacts on the surface latent heat flux, thus regulating surface temperature variations. Using correlations between monthly anomalies in net absorbed radiative fluxes, precipitation, 2-m air temperature, and soil moisture in the ERA-Interim reanalysis and the HadCM3 climate model, we develop a linear diagnostic model to quantify the major effects of land–atmosphere interactions on summertime surface temperature variability. The spatial patterns in 2-m air temperature and soil moisture variance from the diagnostic model are consistent with those from the products from which it was derived, although the diagnostic model generally underpredicts soil moisture variance. We use the diagnostic model to quantify the impact of soil moisture, shortwave radiation, and precipitation anomalies on temperature variance in wet and dry regions. Consistent with other studies, we find that fluctuations in soil moisture amplify temperature variance in dry regions through their impact on latent heat flux, whereas in wet regions temperature variability is muted because of high mean evapotranspiration rates afforded by plentiful surface soil moisture. We demonstrate how the diagnostic model can be used to identify sources of temperature variance bias in climate models.

     
    more » « less
  5. Through integrating multi-source data including high-resolution remote sensing image-based land use and land cover (LULC) data, model-based land use products, and historical land archives, we reconstructed historical LULC at an annual time scale and 1 km x 1 km resolution in the contiguous United States (CONUS) from 1630 to 2020. Compared to other historical LULC datasets, our data can capture the major characters of LULC as well as provide more accurate information with higher spatial and temporal resolution. The LULC data can be used for regional studies in a wide range of topics including LULC impacts on the ecosystem, biodiversity, water resource, carbon and nitrogen cycles, and greenhouse gas emissions.

     
    more » « less