skip to main content


Title: Technical note: AQMEII4 Activity 1: evaluation of wet and dry deposition schemes as an integral part of regional-scale air quality models
Abstract. We present in this technical note the research protocol for phase 4 of theAir Quality Model Evaluation International Initiative (AQMEII4). Thisresearch initiative is divided into two activities, collectively having threegoals: (i) to define the current state of the science with respect torepresentations of wet and especially dry deposition in regional models,(ii) to quantify the extent to which different dry depositionparameterizations influence retrospective air pollutant concentration andflux predictions, and (iii) to identify, through the use of a common set ofdetailed diagnostics, sensitivity simulations, model evaluation, andreduction of input uncertainty, the specific causes for the current range ofthese predictions. Activity 1 is dedicated to the diagnostic evaluation ofwet and dry deposition processes in regional air quality models (describedin this paper), and Activity 2 to the evaluation of dry deposition pointmodels against ozone flux measurements at multiple towers with multiyearobservations (to be described in future submissions as part of the specialissue on AQMEII4). The scope of this paper is to present the scientificprotocols for Activity 1, as well as to summarize the technical informationassociated with the different dry deposition approaches used by theparticipating research groups of AQMEII4. In addition to describing allcommon aspects and data used for this multi-model evaluation activity, mostimportantly, we present the strategy devised to allow a common process-levelcomparison of dry deposition obtained from models using sometimes verydifferent dry deposition schemes. The strategy is based on adding detaileddiagnostics to the algorithms used in the dry deposition modules of existingregional air quality models, in particular archiving diagnostics specific to land use–land cover(LULC) and creating standardized LULC categories tofacilitate cross-comparison of LULC-specific dry deposition parameters andprocesses, as well as archiving effective conductance and effective flux asmeans for comparing the relative influence of different pathways towards thenet or total dry deposition. This new approach, along with an analysis ofprecipitation and wet deposition fields, will provide an unprecedentedprocess-oriented comparison of deposition in regional air quality models.Examples of how specific dry deposition schemes used in participating modelshave been reduced to the common set of comparable diagnostics defined forAQMEII4 are also presented.  more » « less
Award ID(s):
1848372
NSF-PAR ID:
10336337
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
21
Issue:
20
ISSN:
1680-7324
Page Range / eLocation ID:
15663 to 15697
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Dry deposition is a major sink of tropospheric ozone.Increasing evidence has shown that ozone dry deposition actively linksmeteorology and hydrology with ozone air quality. However, there is littlesystematic investigation on the performance of different ozone drydeposition parameterizations at the global scale and how parameterizationchoice can impact surface ozone simulations. Here, we present the results ofthe first global, multidecadal modelling and evaluation of ozone drydeposition velocity (vd) using multiple ozone dry depositionparameterizations. We model ozone dry deposition velocities over 1982–2011using four ozone dry deposition parameterizations that are representative ofcurrent approaches in global ozone dry deposition modelling. We useconsistent assimilated meteorology, land cover, and satellite-derived leafarea index (LAI) across all four, such that the differences in simulatedvd are entirely due to differences in deposition model structures orassumptions about how land types are treated in each. In addition, we usethe surface ozone sensitivity to vd predicted by a chemical transportmodel to estimate the impact of mean and variability of ozone dry depositionvelocity on surface ozone. Our estimated vd values from four differentparameterizations are evaluated against field observations, and whileperformance varies considerably by land cover types, our results suggestthat none of the parameterizations are universally better than the others.Discrepancy in simulated mean vd among the parameterizations isestimated to cause 2 to 5 ppbv of discrepancy in surface ozone in theNorthern Hemisphere (NH) and up to 8 ppbv in tropical rainforests in July,and up to 8 ppbv in tropical rainforests and seasonally dry tropical forestsin Indochina in December. Parameterization-specific biases based onindividual land cover type and hydroclimate are found to be the two maindrivers of such discrepancies. We find statistically significant trends inthe multiannual time series of simulated July daytime vd in allparameterizations, driven by warming and drying (southern Amazonia, southernAfrican savannah, and Mongolia) or greening (high latitudes). The trend inJuly daytime vd is estimated to be 1 % yr−1 and leadsto up to 3 ppbv of surface ozone changes over 1982–2011. The interannual coefficient ofvariation (CV) of July daytime mean vd in NH is found to be5 %–15 %, with spatial distribution that varies with the dry depositionparameterization. Our sensitivity simulations suggest this can contributebetween 0.5 to 2 ppbv to interannual variability (IAV) in surface ozone, butall models tend to underestimate interannual CV when compared to long-termozone flux observations. We also find that IAV in some dry depositionparameterizations is more sensitive to LAI, while in others it is more sensitiveto climate. Comparisons with other published estimates of the IAV ofbackground ozone confirm that ozone dry deposition can be an important partof natural surface ozone variability. Our results demonstrate the importanceof ozone dry deposition parameterization choice on surface ozone modellingand the impact of IAV of vd on surface ozone, thus making a strong casefor further measurement, evaluation, and model–data integration of ozone drydeposition on different spatiotemporal scales. 
    more » « less
  2. Abstract. The impact of biomass burning (BB) on the atmospheric burden of volatile organic compounds (VOCs) is highly uncertain. Here we apply the GEOS-Chemchemical transport model (CTM) to constrain BB emissions in the western USA at ∼ 25 km resolution. Across three BB emission inventorieswidely used in CTMs, the inventory–inventory comparison suggests that the totals of 14 modeled BB VOC emissions in the western USA agree with eachother within 30 %–40 %. However, emissions for individual VOCs can differ by a factor of 1–5, driven by the regionally averaged emissionratios (ERs, reflecting both assigned ERs for specific biome and vegetation classifications) across the three inventories. We further evaluate GEOS-Chemsimulations with aircraft observations made during WE-CAN (Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption and Nitrogen) andFIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality) field campaigns. Despite being driven by different global BBinventories or applying various injection height assumptions, the model–observation comparison suggests that GEOS-Chem simulations underpredictobserved vertical profiles by a factor of 3–7. The model shows small to no bias for most species in low-/no-smoke conditions. We thus attribute thenegative model biases mostly to underestimated BB emissions in these inventories. Tripling BB emissions in the model reproduces observed verticalprofiles for primary compounds, i.e., CO, propane, benzene, and toluene. However, it shows no to less significant improvements for oxygenatedVOCs, particularly for formaldehyde, formic acid, acetic acid, and lumped ≥ C3 aldehydes, suggesting the model is missing secondarysources of these compounds in BB-impacted environments. The underestimation of primary BB emissions in inventories is likely attributable tounderpredicted amounts of effective dry matter burned, rather than errors in fire detection, injection height, or ERs, as constrained by aircraftand ground measurements. We cannot rule out potential sub-grid uncertainties (i.e., not being able to fully resolve fire plumes) in the nestedGEOS-Chem which could explain the negative model bias partially, though back-of-the-envelope calculation and evaluation using longer-term groundmeasurements help support the argument of the dry matter burned underestimation. The total ERs of the 14 BB VOCs implemented in GEOS-Chem onlyaccount for half of the total 161 measured VOCs (∼ 75 versus 150 ppb ppm−1). This reveals a significant amount of missing reactiveorganic carbon in widely used BB emission inventories. Considering both uncertainties in effective dry matter burned (× 3) and unmodeledVOCs (× 2), we infer that BB contributed to 10 % in 2019 and 45 % in 2018 (240 and 2040 Gg C) of the total VOC primaryemission flux in the western USA during these two fire seasons, compared to only 1 %–10 % in the standard GEOS-Chem. 
    more » « less
  3. Abstract. Ground-level ozone (O3) is a major air pollutant that adversely affects human health and ecosystem productivity. Removal of troposphericO3 by plant stomatal uptake can in turn cause damage to plant tissues with ramifications for ecosystem and crop health. In manyatmospheric and land surface models, the functionality of stomata opening is represented by a bulk stomatal conductance, which is oftensemi-empirically parameterized and highly fitted to historical observations. A lack of mechanistic linkage to ecophysiological processes such asphotosynthesis may render models inadequate to represent plant-mediated responses of atmospheric chemistry to long-term changes in CO2,climate, and short-lived air pollutant concentrations. A new ecophysiology module was thus developed to mechanistically simulate land−atmosphereexchange of important gas species in GEOS-Chem, a chemical transport model widely used in atmospheric chemistry studies. The implementation not onlyallows for dry deposition to be coupled with plant ecophysiology but also enables plant and crop productivity and functions to respond dynamically toatmospheric chemical changes. We conduct simulations to evaluate the effects of the ecophysiology module on simulated dry deposition velocity andconcentration of surface O3 against an observation-derived dataset known as SynFlux. Our estimated stomatal conductance and dry depositionvelocity of O3 are close to SynFlux with root-mean-squared errors (RMSEs) below 0.3 cm s−1 across different plant functionaltypes (PFTs), despite an overall positive bias in surface O3 concentration (by up to 16 ppbv). Representing ecophysiology wasfound to reduce the simulated biases in deposition fluxes from the prior model but worsen the positive biases in simulated O3concentrations. The increase in positive concentration biases is mostly attributable to the ecophysiology-based stomatal conductance being generallysmaller (and closer to SynFlux values) than that estimated by the prior semi-empirical formulation, calling for further improvements in non-stomataldepositional and non-depositional processes relevant for O3 simulations. The estimated global O3 deposition flux is864 Tg O3 yr−1 with GEOS-Chem, and the new module decreases this estimate by 92 Tg O3 yr−1. Estimated global grossprimary production (GPP) without O3 damage is 119 Pg C yr−1. O3-induced reduction in GPP is 4.2 Pg C yr−1(3.5 %). An elevated CO2 scenario (580 ppm) yields higher global GPP (+16.8 %) and lower global O3depositional sink (−3.3 %). Global isoprene emission simulated with a photosynthesis-based scheme is 317.9 Tg C yr−1, which is31.2 Tg C yr−1 (−8.9 %) less than that calculated using the MEGAN(Model of Emissions of Gases and Aerosols from Nature) emission algorithm. This new model development dynamicallyrepresents the two-way interactions between vegetation and air pollutants and thus provides a unique capability in evaluating vegetation-mediatedprocesses and feedbacks that can shape atmospheric chemistry and air quality, as well as pollutant impacts on vegetation health, especially for anytimescales shorter than the multidecadal timescale. 
    more » « less
  4. Abstract

    This study evaluates the impact of land surface models (LSMs) and urban heterogeneity [using local climate zones (LCZs)] on air temperature simulated by the Weather Research and Forecasting model (WRF) during a regional extreme event. We simulated the 2017 heatwave over Europe considering four scenarios, using WRF coupled with two LSMs (i.e., Noah and Noah‐MP) with default land use/land cover (LULC) and with LCZs from the World Urban Database and Access Portal Tools (WUDAPT). The results showed that implementing the LCZs significantly improves the WRF simulations of the daily temperature regardless of the LSMs. Implementing the LCZs altered the surface energy balance partitioning in the simulations (i.e., the sensible heat flux was reduced and latent heat flux was increased) primarily due to a higher vegetation feedback in the LCZs. The changes in the surface flux translated into an increase in the simulated 2‐m relative humidity and 10‐m wind speed as well as changed air temperature within cities section and generated a temperature gradient that affected the temperatures beyond the urban regions. Despite these changes, the factor separation analysis indicated that the impact of LSM selection was more significant than the inclusion of LCZs. Interestingly, the lowest bias in temperature simulations was achieved when WRF was coupled with the Noah as the LSM and used WUDAPT as the LULC/urban representation.

     
    more » « less
  5. Abstract

    Local and potentially more impactful regional floods are driven by a combination of precipitation‐triggering storms and antecedent conditions. However, it is yet unclear how the importance of these flood drivers and their interplay differs between local and regional events. Therefore, we assess differences in the compounding drivers of local and regional floods in the United States using newly developed classification schemes for storm types and antecedent conditions. Our results show that the dominant storm type triggering floods is frontal events, in particular those related to mesoscale convective systems. The importance of different storm types varies by season, with frontal mesoscale convective systems being most important in summer, nonfrontal, and extratropical cyclone‐related storms in winter and spring, and tropical cyclones in fall. Our comparison of the drivers of local and regional events shows that the relative importance of different storm types only weakly differs between local and regional floods, while antecedent conditions are clearly distinct. Regional events are in 75% of the cases related to wet antecedent conditions in some cases combined with snowmelt, while local events are more likely to also develop under dry conditions. Over all regions and seasons, regional events are most often the result of a frontal storm combined with wet antecedent conditions, which highlights the important role of compounding flood drivers. This finding suggests that regional flood risk and change assessments should account for the compounding nature of atmospheric and land‐surface flood drivers.

     
    more » « less