skip to main content


Title: Importance of dry deposition parameterization choice in global simulations of surface ozone
Abstract. Dry deposition is a major sink of tropospheric ozone.Increasing evidence has shown that ozone dry deposition actively linksmeteorology and hydrology with ozone air quality. However, there is littlesystematic investigation on the performance of different ozone drydeposition parameterizations at the global scale and how parameterizationchoice can impact surface ozone simulations. Here, we present the results ofthe first global, multidecadal modelling and evaluation of ozone drydeposition velocity (vd) using multiple ozone dry depositionparameterizations. We model ozone dry deposition velocities over 1982–2011using four ozone dry deposition parameterizations that are representative ofcurrent approaches in global ozone dry deposition modelling. We useconsistent assimilated meteorology, land cover, and satellite-derived leafarea index (LAI) across all four, such that the differences in simulatedvd are entirely due to differences in deposition model structures orassumptions about how land types are treated in each. In addition, we usethe surface ozone sensitivity to vd predicted by a chemical transportmodel to estimate the impact of mean and variability of ozone dry depositionvelocity on surface ozone. Our estimated vd values from four differentparameterizations are evaluated against field observations, and whileperformance varies considerably by land cover types, our results suggestthat none of the parameterizations are universally better than the others.Discrepancy in simulated mean vd among the parameterizations isestimated to cause 2 to 5 ppbv of discrepancy in surface ozone in theNorthern Hemisphere (NH) and up to 8 ppbv in tropical rainforests in July,and up to 8 ppbv in tropical rainforests and seasonally dry tropical forestsin Indochina in December. Parameterization-specific biases based onindividual land cover type and hydroclimate are found to be the two maindrivers of such discrepancies. We find statistically significant trends inthe multiannual time series of simulated July daytime vd in allparameterizations, driven by warming and drying (southern Amazonia, southernAfrican savannah, and Mongolia) or greening (high latitudes). The trend inJuly daytime vd is estimated to be 1 % yr−1 and leadsto up to 3 ppbv of surface ozone changes over 1982–2011. The interannual coefficient ofvariation (CV) of July daytime mean vd in NH is found to be5 %–15 %, with spatial distribution that varies with the dry depositionparameterization. Our sensitivity simulations suggest this can contributebetween 0.5 to 2 ppbv to interannual variability (IAV) in surface ozone, butall models tend to underestimate interannual CV when compared to long-termozone flux observations. We also find that IAV in some dry depositionparameterizations is more sensitive to LAI, while in others it is more sensitiveto climate. Comparisons with other published estimates of the IAV ofbackground ozone confirm that ozone dry deposition can be an important partof natural surface ozone variability. Our results demonstrate the importanceof ozone dry deposition parameterization choice on surface ozone modellingand the impact of IAV of vd on surface ozone, thus making a strong casefor further measurement, evaluation, and model–data integration of ozone drydeposition on different spatiotemporal scales.  more » « less
Award ID(s):
1750328
NSF-PAR ID:
10131161
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
19
Issue:
22
ISSN:
1680-7324
Page Range / eLocation ID:
14365 to 14385
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Our work explores the impact of two important dimensions of landsystem changes, land use and land cover change (LULCC) as well as directagricultural reactive nitrogen (Nr) emissions from soils, on ozone(O3) and fine particulate matter (PM2.5) in terms of air quality overcontemporary (1992 to 2014) timescales. We account for LULCC andagricultural Nr emissions changes with consistent remote sensingproducts and new global emission inventories respectively estimating theirimpacts on global surface O3 and PM2.5 concentrations as well as Nrdeposition using the GEOS-Chem global chemical transport model. Over thistime period, our model results show that agricultural Nr emissionchanges cause a reduction of annual mean PM2.5 levels over Europe andnorthern Asia (up to −2.1 µg m−3) while increasing PM2.5 levels in India, China and the eastern US (up to +3.5 µg m−3). Land cover changes induce small reductions in PM2.5 (up to −0.7 µg m−3) over Amazonia, China and India due to reduced biogenic volatile organic compound (BVOC) emissions and enhanced deposition of aerosol precursor gases (e.g., NO2, SO2). Agricultural Nr emissionchanges only lead to minor changes (up to ±0.6 ppbv) in annual meansurface O3 levels, mainly over China, India and Myanmar. Meanwhile, ourmodel result suggests a stronger impact of LULCC on surface O3 over the time period across South America; the combination of changes in drydeposition and isoprene emissions results in −0.8 to +1.2 ppbv surfaceozone changes. The enhancement of dry deposition reduces the surface ozone level (up to −1 ppbv) over southern China, the eastern US and central Africa. The enhancement of soil NO emission due to crop expansion also contributes to surface ozone changes (up to +0.6 ppbv) over sub-Saharan Africa. Incertain regions, the combined effects of LULCC and agricultural Nr emission changes on O3 and PM2.5 air quality can be comparable (>20 %) to anthropogenic emission changes over the same time period. Finally, we calculate that the increase in global agricultural Nr emissions leads to a net increase in global land area (+3.67×106km2) that potentially faces exceedance of the critical Nr load (>5 kg N ha−1 yr−1). Our result demonstrates the impacts of contemporary LULCC and agricultural Nr emission changes on PM2.5 and O3 in terms of air quality, as well as the importanceof land system changes for air quality over multidecadal timescales. 
    more » « less
  2. Abstract. Ground-level ozone (O3) is a major air pollutant that adversely affects human health and ecosystem productivity. Removal of troposphericO3 by plant stomatal uptake can in turn cause damage to plant tissues with ramifications for ecosystem and crop health. In manyatmospheric and land surface models, the functionality of stomata opening is represented by a bulk stomatal conductance, which is oftensemi-empirically parameterized and highly fitted to historical observations. A lack of mechanistic linkage to ecophysiological processes such asphotosynthesis may render models inadequate to represent plant-mediated responses of atmospheric chemistry to long-term changes in CO2,climate, and short-lived air pollutant concentrations. A new ecophysiology module was thus developed to mechanistically simulate land−atmosphereexchange of important gas species in GEOS-Chem, a chemical transport model widely used in atmospheric chemistry studies. The implementation not onlyallows for dry deposition to be coupled with plant ecophysiology but also enables plant and crop productivity and functions to respond dynamically toatmospheric chemical changes. We conduct simulations to evaluate the effects of the ecophysiology module on simulated dry deposition velocity andconcentration of surface O3 against an observation-derived dataset known as SynFlux. Our estimated stomatal conductance and dry depositionvelocity of O3 are close to SynFlux with root-mean-squared errors (RMSEs) below 0.3 cm s−1 across different plant functionaltypes (PFTs), despite an overall positive bias in surface O3 concentration (by up to 16 ppbv). Representing ecophysiology wasfound to reduce the simulated biases in deposition fluxes from the prior model but worsen the positive biases in simulated O3concentrations. The increase in positive concentration biases is mostly attributable to the ecophysiology-based stomatal conductance being generallysmaller (and closer to SynFlux values) than that estimated by the prior semi-empirical formulation, calling for further improvements in non-stomataldepositional and non-depositional processes relevant for O3 simulations. The estimated global O3 deposition flux is864 Tg O3 yr−1 with GEOS-Chem, and the new module decreases this estimate by 92 Tg O3 yr−1. Estimated global grossprimary production (GPP) without O3 damage is 119 Pg C yr−1. O3-induced reduction in GPP is 4.2 Pg C yr−1(3.5 %). An elevated CO2 scenario (580 ppm) yields higher global GPP (+16.8 %) and lower global O3depositional sink (−3.3 %). Global isoprene emission simulated with a photosynthesis-based scheme is 317.9 Tg C yr−1, which is31.2 Tg C yr−1 (−8.9 %) less than that calculated using the MEGAN(Model of Emissions of Gases and Aerosols from Nature) emission algorithm. This new model development dynamicallyrepresents the two-way interactions between vegetation and air pollutants and thus provides a unique capability in evaluating vegetation-mediatedprocesses and feedbacks that can shape atmospheric chemistry and air quality, as well as pollutant impacts on vegetation health, especially for anytimescales shorter than the multidecadal timescale. 
    more » « less
  3. To simulate global mercury (Hg) dynamics in chemical transport models (CTMs), surface-atmosphere exchange of gaseous elemental mercury, Hg 0 , is often parameterized based on resistance-based dry deposition schemes coupled with a re-emission function, mainly from soils. Despite extensive use of this approach, direct evaluations of this implementation against field observations of net Hg 0 exchange are lacking. In this study, we evaluate an existing net exchange parameterization (referred to here as the base model) by comparing modeled fluxes of Hg 0 to fluxes measured in the field using micrometeorological techniques. Comparisons were performed in two terrestrial ecosystems: a grassland site in Switzerland and an Arctic tundra site in Alaska, U.S., each including summer and winter seasons. The base model included the dry deposition and soil re-emission parameterizations from Zhang et al. (2003) and the global CTM GEOS-Chem, respectively. Comparisons of modeled and measured Hg 0 fluxes showed large discrepancies, particularly in the summer months when the base model overestimated daytime net deposition by approximately 9 and 2 ng m −2 h −1 at the grassland and tundra sites, respectively. In addition, the base model was unable to capture a measured nighttime net Hg 0 deposition and wintertime deposition. We conducted a series of sensitivity analyses and recommend that Hg simulations using CTMs: (i) reduce stomatal uptake of Hg 0 over grassland and tundra in models by a factor 5–7; (ii) increase nighttime net Hg 0 deposition, e.g. , by increasing ground and cuticular uptake by reducing the respective resistance terms by factors of 3–4 and 2–4, respectively; and (iii) implement a new soil re-emission parameterization to produce larger daytime emissions and lower nighttime emissions. We also compared leaf Hg 0 uptake over the growing season estimated by the dry deposition model against foliar Hg measurements, which revealed good agreement with the measured leaf Hg concentrations after adjusting the base model as suggested above. We conclude that the use of resistance-based models combined with the new soil re-emission flux parameterization is able to reproduce observed diel and seasonal patterns of Hg 0 exchange in these ecosystems. This approach can be used to improve model parameterizations for other ecosystems if flux measurements become available. 
    more » « less
  4. Fire causes abrupt changes in vegetation properties and modifies flux exchanges between land and atmosphere at subseasonal to seasonal scales. Yet these shortterm fire effects on vegetation dynamics and surface energy balance have not been comprehensively investigated in the fire-coupled vegetation model. This study applies the SSiB4/TRIFFID-Fire (the Simplified Simple Biosphere Model coupled with the Top-down Representation of Interactive Foliage and Flora Including Dynamics with fire) model to study the short-term fire impact in southern Africa. Specifically, we aim to quantify how large impacts fire exerts on surface energy through disturbances on vegetation dynamics, how fire effects evolve during the fire season and the subsequent rainy season, and how surface-darkening effects play a role besides the vegetation change effects. We find fire causes an annual average reduction in grass cover by 4 %–8% for widespread areas between 5–20 S and a tree cover reduction by 1% at the southern periphery of tropical rainforests. The regional fire effects accumulate during June–October and peak in November, the beginning of the rainy season. After the fire season ends, the grass cover quickly returns to unburned conditions, while the tree fraction hardly recovers in one rainy season. The vegetation removal by fire has reduced the leaf area index (LAI) and gross primary productivity (GPP) by 3 %–5% and 5 %–7% annually. The exposure of bare soil enhances surface albedo and therefore decreases the absorption of shortwave radiation. Annual mean sensible heat has dropped by 1.4Wm−2, while the latent heat reduction is small (0.1Wm−2/ due to the evaporation. Surface temperature is increased by as much as 0.33K due to the decrease of sensible heat fluxes, and the warming would be enhanced when the surface-darkening effect is incorporated. Our results suggest that fire effects in grass-dominant areas diminish within 1 year due to the high resilience of grasses after fire. Yet fire effects in the periphery of tropical forests are irreversible within one growing season and can cause large-scale deforestation if accumulated for hundreds of years. 
    more » « less
  5. Abstract

    Water stress regulates land‐atmosphere carbon dioxide (CO2) exchanges in the tropics; however, its role remains poorly characterized due to the confounding roles of radiation, temperature and canopy dynamics. In particular, uncertainty stems from the relative roles of plant‐available water (supply) and atmospheric water vapor deficit (demand) as mechanistic drivers of photosynthetic carbon (C) uptake variability. Using satellite measurements of gravity, CO2and fluorescence to constrain a mechanistic carbon‐water cycle model from 2001 to 2018, we found that the interannual variability (IAV) of water stress on photosynthetic C uptake was 52% greater than the combined effects of other factors. Surprisingly, the dominance of water stress on C uptake IAV was greater in the wet tropics (94%) than in the dry tropics (26%). Plant‐available water supply and atmospheric demand both contributed to the IAV of water stress on photosynthetic C uptake across the tropics, but the IAV of demand effects was 21% greater than the IAV of supply effects (33% greater in the wet tropics and 6% greater in the dry tropics). We found that the IAV of water stress on C uptake was 24% greater than the IAV of the combination of other factors in the net land‐atmosphere C sink in the whole tropics, 26% greater in the wet tropics, and 7% greater in the dry tropics. Given the recent trends in tropical precipitation and atmospheric humidity, our findings indicate that water stress——from both supply and demand——will likely dominate the climate response of land C sink across tropical ecosystems in the coming decades.

     
    more » « less