skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Environmental Drivers of Nearshore Fish Community Composition and Size Structure in Glacially Influenced Gulf of Alaska Estuaries
Abstract Coastal ecosystems in Alaska are undergoing rapid change due to warming and glacier recession. We used a natural gradient of glacierized to non-glacierized watersheds (0–60% glacier coverage) in two regions along the Gulf of Alaska—Kachemak Bay and Lynn Canal—to evaluate relationships between local environmental conditions and estuarine fish communities. Multivariate analyses of fish community data collected from five sites per region in 2019 showed that region accounted for the most variation in community composition, suggesting that local effects of watershed type were masked by regional-scale variables. Seasonal shifts in community composition were driven largely by the influx of juvenile Pacific salmon ( Oncorhynchus spp.) in late spring. Spatiotemporal differences among fish communities were partly explained by salinity and temperature, which accounted for 19.5% of the variation in community composition. We used a multi-year dataset from Lynn Canal (2014–2019) to examine patterns of mean length for two dominant species. Generalized additive mixed models indicated that Pacific staghorn sculpin ( Leptocottus armatus ) mean length varied along site-specific seasonal gradients, increasing gradually through the summer in the least glacially influenced sites and increasing rapidly to an asymptote of ~ 150 mm in the most glacially influenced sites. Starry flounder ( Platichthys stellatus ) mean length was more strongly related to environmental conditions, increasing with temperature and turbidity. Together, our findings suggest that community compositions of estuarine fishes show greater variation at the regional scale than the watershed scale, but species-specific variation in size distributions may indicate differences in habitat quality across watershed types within regions.  more » « less
Award ID(s):
1757348
PAR ID:
10336360
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Estuaries and Coasts
ISSN:
1559-2723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Along the Gulf ofAlaska, rapid glacier retreat has driven changes in transport of freshwater, sediments, and nutrients to estuary habitats. Over the coming decades, deglaciation will lead to a temporary increase, followed by a long-term decline of glacial influence on estuaries. Therefore, quantifying the current variability in estuarine fish community structure in regions predicted to be most affected by glacier loss is necessary to anticipate future impacts. We analyzed fish community data collected monthly (April through September) over 7 years (2013–2019) from glacially influenced estuaries along the southeastern Gulf of Alaska. River delta sites within estuaries were sampled along a natural gradient of glacial to non-glacial watersheds to characterize variation in fish communities exposed to varying degrees of glacial influence. Differences in seasonal patterns of taxa richness and abundance between the most and least glacially influenced sites suggest that hydrological drivers influence the structure of delta fish communities. The most glacially influenced sites had lower richness but higher abundance overall compared to those with least glacial influence; however, differences among sites were small compared to differences across months. Two dominant species—Pacific staghorn sculpin and starry flounder—contributed most to spatial and temporal variation in community composition; however, given only small interannual differences in richness and abundance over the period of the study, we conclude that year-to-year variation at these sites is relatively low at present. Our study provides an important benchmark against which to compare shifts in fish communities as watersheds and downstream estuaries continue to transform in the coming decades. 
    more » « less
  2. Abstract Rapid changes in sea ice extent and changes in freshwater inputs from land are rapidly changing the nature of Arctic estuarine ecosystems. In the Beaufort Sea, these nearshore habitats are known for their high productivity and mix of marine resident and diadromous fishes that have great subsistence value for Indigenous communities. There is, however, a lack of information on the spatial variation among Arctic nearshore fish communities as related to environmental drivers. In summers of 2017–2019, we sampled fishes in four estuarine ecosystems to assess community composition and relate fish abundance to temperature, salinity, and wind conditions. We found fish communities were heterogeneous over larger spatial extents with rivers forming fresh estuarine plumes that supported diadromous species (e.g., broad whitefishCoregonus nasus), while lagoons with reduced freshwater input and higher salinities were associated with marine species (e.g., saffron codEleginus gracilis). West–East directional winds accounted for up to 66% of the community variation, indicating importance of the wind-driven balance between fresh and marine water masses. Salinity and temperature accounted for up to 54% and 37% of the variation among lagoon communities, respectively. Recent sea ice declines provide more opportunity for wind to influence oceanographic conditions and biological communities. Current subsistence practices, future commercial fishing opportunities, and on-going oil and gas activities benefit from a better understanding of current fish community distributions. This work provides important data on fish spatial distributions and community composition, providing a basis for fish community response to changing climatic conditions and anthropogenic use. 
    more » « less
  3. Abstract Biospheric particulate organic carbon (POCbio) burial and rock petrogenic particulate organic carbon (POCpetro) oxidation are opposing long‐term controls on the global carbon cycle, sequestering and releasing carbon, respectively. Here, we examine how watershed glacierization impacts the POC source by assessing the concentration and isotopic composition (δ13C and Δ14C) of POC exported from four watersheds with 0%–49% glacier coverage across a melt season in Southeast Alaska. We used two mixing models (age‐weight percent and dual carbon isotope) to calculate concentrations of POCbioand POCpetrowithin the bulk POC pool. The fraction POCpetrocontribution was highest in the heavily glacierized watershed (age‐weight percent: 0.39 ± 0.05; dual isotope: 0.42 (0.37–0.47)), demonstrating a glacial source of POCpetroto fjords. POCpetrowas mobilized via glacier melt and subglacial flow, while POCbiowas largely flushed from the non‐glacierized landscape by rain. Flow normalized POCbioconcentrations exceeded POCpetroconcentrations for all streams, but surprisingly were highest in the heavily glacierized watershed (mean: 0.70 mgL−1; range 0.16–1.41 mgL−1), suggesting that glacier rivers can contribute substantial POCbioto coastal waters. Further, the most heavily glacierized watershed had the highest sediment concentration (207 mgL−1; 7–708 mgL−1), and thus may facilitate long‐term POCbioprotection via sediment burial in glacier‐dominated fjords. Our results suggest that continuing glacial retreat will decrease POC concentrations and increase POCbio:POCpetroexported from currently glacierized watersheds. Glacier retreat may thus decrease carbon storage in marine sediments and provide a positive feedback mechanism to climate change that is sensitive to future changes in POCpetrooxidation. 
    more » « less
  4. Abstract Glacierized coastal catchments of the Gulf of Alaska (GoA) are undergoing rapid hydrologic fluctuations in response to climate change. These catchments deliver dissolved and suspended inorganic and organic matter to nearshore marine environments, however, these glacierized coastal catchments are relatively understudied and little is known about total solute and particulate fluxes to the ocean. We present hydrologic, physical, and geochemical data collected during April–October 2019–2021 from 10 streams along gradients of glacial fed to non‐glacial (i.e., precipitation) fed, in one Southcentral and one Southeast Alaska region. Hydrologic data reveal that glaciers drive the seasonal runoff patterns. The ẟ18O signature and specific conductance show distinctive seasonal variations in stream water sources between the study regions apparently due to the large amounts of rain in Southeast Alaska. Total dissolved solids concentrations and yields were elevated in the Southcentral region, due to lithologic influence on dissolved loads, however, the hydroclimate is the primary driver of the timing of dissolved and suspended yields. We show the yields of dissolved organic carbon is higher and that the δ13CPOCis enriched in the Southeast streams illustrating contrasts in organic carbon export across the GoA. Finally, we illustrate how future yields of solutes and sediments to the GoA may change as watersheds evolve from glacial influenced to precipitation dominated. This integrated analysis provides insights into how watershed characteristics beyond glacier coverage control properties of freshwater inputs to the GoA and the importance of expanding study regions to multiple hydroclimate regimes. 
    more » « less
  5. Abstract Lateral transport of organic carbon (OC) to the coastal ocean is an important component of the global carbon cycle because rivers transport, mineralize, and bury significant amounts of OC. Glaciers drive water and sediment export from many high‐elevation and high‐latitude ecosystems, yet their role in watershed OC balances is poorly understood, particularly with regard to particulate OC. Here, we evaluate seasonal water, sediment, and comprehensive OC budgets, including both dissolved and particulate forms, for three watersheds in southeast Alaska that vary in glacier coverage. We show that glacier loss will shift the dominant size fraction of riverine OC from particulate toward dissolved and potentially alter the provenance of particulate OC. Glacier coverage also controls whether OC export is source (C stock) or transport (runoff) limited at the watershed scale. These findings provide insight into the future trajectory of riverine OC export in glacierized regions. 
    more » « less