skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seasonal and interannual variation in high-latitude estuarine fish community structure along a glacial to non-glacial watershed gradient in Southeast Alaska
Abstract Along the Gulf ofAlaska, rapid glacier retreat has driven changes in transport of freshwater, sediments, and nutrients to estuary habitats. Over the coming decades, deglaciation will lead to a temporary increase, followed by a long-term decline of glacial influence on estuaries. Therefore, quantifying the current variability in estuarine fish community structure in regions predicted to be most affected by glacier loss is necessary to anticipate future impacts. We analyzed fish community data collected monthly (April through September) over 7 years (2013–2019) from glacially influenced estuaries along the southeastern Gulf of Alaska. River delta sites within estuaries were sampled along a natural gradient of glacial to non-glacial watersheds to characterize variation in fish communities exposed to varying degrees of glacial influence. Differences in seasonal patterns of taxa richness and abundance between the most and least glacially influenced sites suggest that hydrological drivers influence the structure of delta fish communities. The most glacially influenced sites had lower richness but higher abundance overall compared to those with least glacial influence; however, differences among sites were small compared to differences across months. Two dominant species—Pacific staghorn sculpin and starry flounder—contributed most to spatial and temporal variation in community composition; however, given only small interannual differences in richness and abundance over the period of the study, we conclude that year-to-year variation at these sites is relatively low at present. Our study provides an important benchmark against which to compare shifts in fish communities as watersheds and downstream estuaries continue to transform in the coming decades.  more » « less
Award ID(s):
1757348
PAR ID:
10365660
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Environmental Biology of Fishes
Volume:
105
Issue:
3
ISSN:
0378-1909
Page Range / eLocation ID:
p. 431-452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Coastal ecosystems in Alaska are undergoing rapid change due to warming and glacier recession. We used a natural gradient of glacierized to non-glacierized watersheds (0–60% glacier coverage) in two regions along the Gulf of Alaska—Kachemak Bay and Lynn Canal—to evaluate relationships between local environmental conditions and estuarine fish communities. Multivariate analyses of fish community data collected from five sites per region in 2019 showed that region accounted for the most variation in community composition, suggesting that local effects of watershed type were masked by regional-scale variables. Seasonal shifts in community composition were driven largely by the influx of juvenile Pacific salmon ( Oncorhynchus spp.) in late spring. Spatiotemporal differences among fish communities were partly explained by salinity and temperature, which accounted for 19.5% of the variation in community composition. We used a multi-year dataset from Lynn Canal (2014–2019) to examine patterns of mean length for two dominant species. Generalized additive mixed models indicated that Pacific staghorn sculpin ( Leptocottus armatus ) mean length varied along site-specific seasonal gradients, increasing gradually through the summer in the least glacially influenced sites and increasing rapidly to an asymptote of ~ 150 mm in the most glacially influenced sites. Starry flounder ( Platichthys stellatus ) mean length was more strongly related to environmental conditions, increasing with temperature and turbidity. Together, our findings suggest that community compositions of estuarine fishes show greater variation at the regional scale than the watershed scale, but species-specific variation in size distributions may indicate differences in habitat quality across watershed types within regions. 
    more » « less
  2. Abstract AimAnthropogenic warming of marine systems has caused biological and physiological responses that are fundamentally altering ecosystem structure. Because estuaries exist at the land‐ocean interface, they are particularly vulnerable to the effects of ocean warming as they can undergo rapid biogeochemical and hydrological shifts due to climate and land‐use change. We explored how multiple components of estuarine fish diversity—turnover, richness, and abundance—have changed in the North Atlantic and Gulf of Mexico estuaries across space and time and the drivers of change. LocationNorth Atlantic and Gulf of Mexico. TaxaFish. MethodWe compiled long‐term (>30 years), continent‐wide fisheries independent trawl surveys conducted in estuaries—from the Gulf of Maine to the Gulf of Mexico (U.S. waters)—and combined these with climate and land‐use‐land‐cover data to examine trends and ecological drivers of fish richness, abundance and turnover using mixed‐effect models. ResultsSpecies richness, abundance and turnover have increased in North Atlantic and Gulf of Mexico estuaries in the last 30 years. These changes were mediated largely by sea‐surface temperature anomalies, especially in more northern estuaries where warming has been relatively pronounced. Main ConclusionThe increasing trajectory of turnover in many estuaries suggests that fish communities have changed fundamentally from the baselines. A fundamental change in community composition can lead to an irreversible trophic imbalance or alternative stable states among other outcomes. Thus, predicting how shifting community structures might influence food webs, ecosystem stability, and human resource use remain a pertinent task. 
    more » « less
  3. Glacial meltwater contributions to streams depend on watershed characteristics that impact water quantity and quality, with potential changes as glaciers continue to recede. The purpose of our study was to investigate the influence of glacier and bedrock controls on water chemistry in glacial streams, focusing on a range of small to large watersheds in Alaska. Southcentral Alaska provides an ideal study area due to diverse geologic characteristics and varying amounts of glacial coverage across watersheds. To investigate spatial and temporal variability due to glacial coverage and bedrock type, we analyzed water samples (n= 343) from seven watersheds over 2 years for major and trace element concentrations and water stable isotopes. We found variable water chemistry across the glacial rivers related to glacial coverage and the relative amount of metamorphic, sedimentary, and igneous bedrock. Some sites had elevated concentrations of harmful trace elements like As and U from glacier melt or groundwater. Longitudinal (upstream to downstream) variability was apparent within each river, with increasing inputs from tributaries, and groundwater altering the water chemistry relative to glacier meltwater contributions. The water chemistry and isotopic composition of river samples compared with endmember sources suggested a range from glacier-dominated to groundwater-dominated sites along stream transects. For example, water chemistry in the Knik and Matanuska rivers (with large contributing glaciers) was more influenced by glacier meltwater, while water chemistry in the Little Susitna River (with small glaciers) was more influenced by groundwater. Across all rivers, stream chemistry was controlled by glacier inputs near the headwaters and groundwater inputs downstream, with the water chemistry reflecting bedrock type. Our study provides a greater understanding of geochemical and hydrological processes controlling water resources in rapidly changing glacial watersheds. 
    more » « less
  4. Abstract Estuaries are among the most productive ecosystems on Earth, yet they are at risk in high-latitude regions due to climate-driven effects on the connected terrestrial and marine realms. Northern Hemisphere warming exceeds the global average and accelerates the melting of glaciers. As a result, the magnitude of freshwater discharge into estuaries may increase during the peak in glacial meltwater, ultimately affecting the riverine flux of organic matter (OM) from the land to coastal environments and food webs within. We investigated the extent to which terrestrial OM subsidizes nearshore food webs in northern Gulf of Alaska watersheds and if differences in the relative proportion of terrestrial versus marine OM supporting these food webs are explained by watershed glacial cover and/or by seasonal glacial discharge regimes. A stable isotope mixing model was employed to determine the contribution of marine (phytoplankton, macroalgae) and terrestrial (vascular plant) sources to the diets of grazing/detritivore and filter/suspension-feeding coastal invertebrates at the outflows of watersheds of varying glacial influence and across three distinct discharge periods. Additionally, a distance-based redundancy analysis was conducted to investigate the effects of watershed-characteristic (e.g., slope, vegetation cover) sourcing and transport of terrestrial OM on consumer diets. The diets of both feeding groups were predominantly marine (> 90%) and varied little among estuarine study sites at watersheds of different glacial cover or glacial discharge periods. Our findings suggest that terrestrial OM is not readily used by nearshore food webs in this productive study system, presumably due to the high quantity and quality of available marine OM. 
    more » « less
  5. Cuomo, Christina A (Ed.)
    Abstract Supraglacial pools are prevalent on debris-covered mountain glaciers, yet only limited information is available on the microbial communities within these habitats. Our research questions for this preliminary study were: (1) What microbes occur in supraglacial pool sediments of monsoonal Tibet?; (2) Which abiotic and biotic habitat variables have the most influence on the microbial community structure?; and (3) Does microbial composition of supraglacial pool sediments differ from that of glacial-melt stream pool sediments? We collected microbial samples for 16S rRNA sequencing and invertebrates for enumeration and identification and measured 14 abiotic variables from 46 supraglacial pools and nine glacial-melt stream pools in 2018 and 2019. Generalized linear model analyses, small sample Akaike information criterion, and variable importance scores were used to identify the best predictor variables of microbial community structure. Multi-response permutation procedure (MRPP) was used to compare taxa composition between supraglacial pools and stream pools. The most abundant phyla in supraglacial pool sediments were Proteobacteria, Actinobacteria, Bacteroidota, Chloroflexi, and Cyanobacteria. Genera richness, indicator genera richness, andPolaromonasrelative abundance were best predicted by Chironomidae larvae abundance. 
    more » « less