skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: What's math got to do with patterns in fish?
When you think of fish, what comes to mind? Maybe you think of pet goldfish, movie characters like Dory or Nemo, or trout in a local river. One of the things that all of these fish have in common is patterns in their skin. Nemo sports black and white stripes in his orange skin, and trout have spots. Even goldfish have a pattern -- it's just plain gold (and kinda boring). Why do some fish have stripes, others have spots, and others have plain patterns? It turns out that this is a tricky question, so scientists need tools from several subjects to answer it. In this paper, we use biology, math, and computer coding to help figure out how fish get different skin patterns.  more » « less
Award ID(s):
1764421
PAR ID:
10336426
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis Although hormonally-derived female sex pheromones have been well described in approximately a dozen species of teleost fish, only a few male sex pheromones have been characterized and the neuroendocrine underpinnings of behavioral responsiveness to them is not understood. Herein, we describe a study that addresses this question using the goldfish, Carassius auratus, an important model species of how hormones drive behavior in egg-laying teleost fishes. Our study had four components. First, we examined behavioral responsiveness of female goldfish and found that when injected with prostaglandin F2α (PGF2α), a treatment that drives female sexual receptivity, and found that they became strongly and uniquely attracted to the odor of conspecific mature males, while non-PGF2α-treated goldfish did not discern males from females. Next, we characterized the complexity and specificity of the male pheromone by examining the responsiveness of PGF2α-treated females to the odor of either mature male conspecifics or male common carp odor, as well as their nonpolar and polar fractions. We found that the odor of male goldfish was more attractive than that of male common carp, and that its activity was attributable to both its nonpolar and polar fractions with the later conveying information on species-identity. Third, we hypothesized that androstenedione (AD), a 19-carbon sex steroid produced by all male fish might be the nonpolar fraction and tested whether PGF2α-treated goldfish were attracted to either AD alone or as part of a mixture in conspecific water. We found that while AD was inactive on its own, it became highly attractive when added to previously unattractive female conspecific water. Lastly, in a test of whether nonhormonal conspecific odor might determine species-specificity, we added AD to water of three species of fish and found that while AD made goldfish water strongly attractive, its effects on other species holding water were small. We conclude that circulating PGF2α produced at the time of ovulation induces behavioral sensitivity to a male sex pheromone in female goldfish and that this male pheromone is comprised of AD and a mixture of body metabolites. Because PGF2α commonly mediates ovulation and female sexual behavior in egg-laying fishes, and AD is universally produced by male fishes as a precursor to testosterone, we suggest that these two hormones may have similar roles mediating male–female behavior and communication in many species of fish. 
    more » « less
  2. Abstract This report briefly summarizes the key mentors in my scientific career and some lessons learned from those influential people. My primary advice to others: it is okay to do something wrong. By doing science we are doing something hard that, by definition, has not been done before. I believe that impostor syndrome is a real threat to researcher wellbeing and we should acknowledge its presence and support each other to get through it. Regarding an approach to science, I encourage you to get started and make something bad. Also, take time for yourself, it really does help your productivity. To lead others, I recommend to be enthusiastic, actively listen, and make connections across disciplines. I think it is important to foster creativity in those around you. I advocate that you actively make the future that you want to have. 
    more » « less
  3. Elevated concentrations of nitrite are toxic to fish and can cause a myriad of well documented issues. However, the effects of sublethal concentrations of nitrite on fish health, and specifically, fish tissue microbiomes have not been studied. To test the effects of nitrite exposure, goldfish were exposed to sublethal concentrations of nitrite, 0.0 mM, 0.1 mM, and 1.0 mM, for 2 months. The bacteria in the nose, skin, gills, and water were then extracted and sequenced to identify changes to the microbial composition. The water microbiome was not significantly changed by the added nitrite; however, each of the tissue microbiomes was changed by at least one of the treatments. The skin and gill microbiomes were significantly different between the control and 1.0 mM treatment and the nose microbiome showed significant changes between the control and both the 0.1 mM and 1.0 mM treatments. Thus, sublethal concentrations of nitrite in the environment caused a shift in the fish tissue microbiomes independently of the water microbiome. These changes could lead to an increased chance of infection, disrupt organ systems, and raise the mortality rate of fish. In systems with high nitrite concentrations, like intensive aquaculture setups or polluted areas, the effects of nitrite on the microbiomes could negatively affect fish populations. 
    more » « less
  4. Abstract Zebrafish (Danio rerio) feature black and yellow stripes, while relatedDaniosdisplay different patterns. All these patterns form due to the interactions of pigment cells, which self-organize on the fish skin. Until recently, research focused on two cell types (melanophores and xanthophores), but newer work has uncovered the leading role of a third type, iridophores: by carefully orchestrated transitions in form, iridophores instruct the other cells, but little is known about what drives their form changes. Here we address this question from a mathematical perspective: we develop a model (based on known interactions between the original two cell types) that allows us to assess potential iridophore behavior. We identify a set of mechanisms governing iridophore form that is consistent across a range of empirical data. Our model also suggests that the complex cues iridophores receive may act as a key source of redundancy, enabling both robust patterning and variability withinDanio. 
    more » « less
  5. Abstract Metabolic rate (MR) usually changes (scales) out of proportion to body mass (BM) as MR = aBMb, where a is a normalisation constant and b is the scaling exponent that reflects how steep this change is. This scaling relationship is fundamental to biology, but over a century of research has provided little consensus on the value of b, and why it appears to vary among taxa and taxonomic levels. By analysing published data on fish and taking an individual-based approach to metabolic scaling, I show that variation in growth of fish under naturally restricted food availability can explain variation in within-individual (ontogenetic) b for standard (maintenance) metabolic rate (SMR) of brown trout (Salmo trutta), with the fastest growers having the steepest metabolic scaling (b ≈ 1). Moreover, I show that within-individual b can vary much more widely than previously assumed from work on different individuals or different species, from –1 to 1 for SMR among individual brown trout. The negative scaling of SMR for some individuals was caused by reductions in metabolic rate in a food limited environment, likely to maintain positive growth. This resulted in a mean within-individual b for SMR that was significantly lower than the across-individual (“static”) b, a difference that also existed for another species, cunner (Tautogolabrus adspersus). Interestingly, the wide variation in ontogenetic b for SMR among individual brown trout did not exist for maximum (active) metabolic rate (MMR) of the same fish, showing that these two key metabolic traits (SMR and MMR) can scale independently of one another. I also show that across-species (“evolutionary”) b for SMR of 134 fishes is significantly steeper (b approaching 1) than the mean ontogenetic b for the brown trout and cunner. Based on these interesting findings, I hypothesise that evolutionary and static metabolic scaling can be systematically different from ontogenetic scaling, and that the steeper evolutionary than ontogenetic scaling for fishes arises as a by-product of natural selection for fast-growing individuals with steep metabolic scaling (b ≈ 1) early in life, where size-selective mortality is high for fishes. I support this by showing that b for SMR tends to increase with natural mortality rates of fish larvae within taxa. 
    more » « less