skip to main content


Title: Src acts with WNT/FGFRL signaling to pattern the planarian anteroposterior axis
ABSTRACT Tissue identity determination is crucial for regeneration, and the planarian anteroposterior (AP) axis uses positional control genes expressed from body wall muscle to determine body regionalization. Canonical Wnt signaling establishes anterior versus posterior pole identities through notum and wnt1 signaling, and two Wnt/FGFRL signaling pathways control head and trunk domains, but their downstream signaling mechanisms are not fully understood. Here, we identify a planarian Src homolog that restricts head and trunk identities to anterior positions. src-1(RNAi) animals formed enlarged brains and ectopic eyes and also duplicated trunk tissue, similar to a combination of Wnt/FGFRL RNAi phenotypes. src-1 was required for establishing territories of positional control gene expression in Schmidtea mediterranea, indicating that it acts at an upstream step in patterning the AP axis. Double RNAi experiments and eye regeneration assays suggest src-1 can act in parallel to at least some Wnt and FGFRL factors. Co-inhibition of src-1 with other posterior-promoting factors led to dramatic patterning changes and a reprogramming of Wnt/FGFRLs into controlling new positional outputs. These results identify src-1 as a factor that promotes robustness of the AP positional system that instructs appropriate regeneration.  more » « less
Award ID(s):
1764421
NSF-PAR ID:
10336435
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Development
Volume:
149
Issue:
7
ISSN:
0950-1991
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Wnt genes code for ligands that activate signaling pathways during development in Metazoa. Through the canonical Wnt (cWnt) signaling pathway, these genes regulate important processes in bilaterian development, such as establishing the anteroposterior axis and posterior growth. In Arthropoda, Wnt ligands also regulate segment polarity, and outgrowth and patterning of developing appendages. Arthropods are part of a lineage called Panarthropoda that includes Onychophora and Tardigrada. Previous studies revealed potential roles of Wnt genes in regulating posterior growth, segment polarity, and growth and patterning of legs in Onychophora. Unlike most other panarthropods, tardigrades lack posterior growth, but retain segmentation and appendages. Here, we investigated Wnt genes in tardigrades to gain insight into potential roles that these genes play during development of the highly compact and miniaturized tardigrade body plan.

    Results

    We analyzed published genomes for two representatives of Tardigrada,Hypsibius exemplarisandRamazzottius varieornatus. We identified single orthologs ofWnt4,Wnt5,Wnt9,Wnt11, andWntA, as well as twoWnt16paralogs in both tardigrade genomes. We only found aWnt2ortholog inH. exemplaris. We could not identify orthologs ofWnt1,Wnt6,Wnt7,Wnt8, orWnt10. We identified most other components of cWnt signaling in both tardigrade genomes. However, we were unable to identify an ortholog ofarrow/Lrp5/6, a gene that codes for a Frizzled co-receptor of Wnt ligands. Additionally, we found that some other animals that have lost several Wnt genes and are secondarily miniaturized, like tardigrades, are also missing an ortholog ofarrow/Lrp5/6. We analyzed the embryonic expression patterns of Wnt genes inH. exemplarisduring developmental stages that span the establishment of the AP axis through segmentation and leg development. We detected expression of all Wnt genes inH. exemplarisbesides one of theWnt16paralogs. During embryo elongation, expression of several Wnt genes was restricted to the posterior pole or a region between the anterior and posterior poles. Wnt genes were expressed in distinct patterns during segmentation and development of legs inH. exemplaris, rather than in broadly overlapping patterns.

    Conclusions

    Our results indicate that Wnt signaling has been highly modified in Tardigrada. While most components of cWnt signaling are conserved in tardigrades, we conclude that tardigrades have lostWnt1,Wnt6,Wnt7,Wnt8, andWnt10, along witharrow/Lrp5/6. Our expression data may indicate a conserved role of Wnt genes in specifying posterior identities during establishment of the AP axis. However, the loss of several Wnt genes and the distinct expression patterns of Wnt genes during segmentation and leg development may indicate that combinatorial interactions among Wnt genes are less important during tardigrade development compared to many other animals. Based on our results, and comparisons to previous studies, we speculate that the loss of several Wnt genes in Tardigrada may be related to a reduced number of cells and simplified development that accompanied miniaturization and anatomical simplification in this lineage.

     
    more » « less
  2. The trunk is a key feature of the bilaterian body plan. Despite spectacular morphological diversity in bilaterian trunk anatomies, most insights into trunk development are from segmented taxa, namely arthropods and chordates. Mechanisms of posterior axis elongation (PAE) and segmentation are tightly coupled in arthropods and vertebrates, making it challenging to differentiate between the underlying developmental mechanisms specific to each process. Investigating trunk elongation in unsegmented animals facilitates examination of mechanisms specific to PAE and provides a different perspective for testing hypotheses of bilaterian trunk evolution. Here we investigate the developmental roles of canonical Wnt and Notch signaling in the hemichordateSaccoglossus kowalevskiiand reveal that both pathways play key roles in PAE immediately following the completion of gastrulation. Furthermore, our functional analysis of the role of Brachyury is supportive of a Wnt-Brachyury feedback loop during PAE inS. kowalevskii, establishing this key regulatory interaction as an ancestral feature of deuterostomes. Together, our results provide valuable data for testing hypotheses of bilaterian trunk evolution.

     
    more » « less
  3. Alvarado, A Sanchez (Ed.)
    Abstract G protein-coupled receptors play broad roles in development and stem cell biology, but few roles for G protein-coupled receptor signaling in complex tissue regeneration have been uncovered. Planarian flatworms robustly regenerate all tissues and provide a model with which to explore potential functions for G protein-coupled receptor signaling in somatic regeneration and pluripotent stem cell biology. As a first step toward exploring G protein-coupled receptor function in planarians, we investigated downstream signal transducers that work with G protein-coupled receptors, called heterotrimeric G proteins. Here, we characterized the complete heterotrimeric G protein complement in Schmidtea mediterranea for the first time and found that 7 heterotrimeric G protein subunits promote regeneration. We further characterized 2 subunits critical for regeneration, Gαq1 and Gβ1-4a, finding that they promote the late phase of anterior polarity reestablishment, likely through anterior pole-produced Follistatin. Incidentally, we also found that 5 G protein subunits modulate planarian behavior. We further identified a putative serotonin receptor, gcr052, that we propose works with Gαs2 and Gβx2 in planarian locomotion, demonstrating the utility of our strategy for identifying relevant G protein-coupled receptors. Our work provides foundational insight into roles of heterotrimeric G proteins in planarian biology and serves as a useful springboard toward broadening our understanding of G protein-coupled receptor signaling in adult tissue regeneration. 
    more » « less
  4. Reactive oxygen species (ROS) signaling regulates cell behaviors and tissue growth in development, regeneration, and cancer. Commonly, ROS are modulated pharmacologically, which while effective comes with potential complications such as off-target effects and lack of drug tolerance. Thus, additional non-invasive therapeutic methods are necessary. Recent advances have highlighted the use of weak magnetic fields (WMFs, <1 mT) as one promising approach. We previously showed that 200 μT WMFs inhibit ROS formation and block planarian regeneration. However, WMF research in different model systems at various field strengths have produced a range of results that do not fit common dose response curves, making it unclear if WMF effects are predictable. Here, we test hypotheses based on spin state theory and the radical pair mechanism, which outlines how magnetic fields can alter the formation of radical pairs by changing electron spin states. This mechanism suggests that across a broad range of field strengths (0–900 μT) some WMF exposures should be able to inhibit while others promote ROS formation in a binary fashion. Our data reveal that WMFs can be used for directed manipulation of stem cell proliferation, differentiation, and tissue growth in predictable ways for both loss and gain of function during regenerative growth. Furthermore, we examine two of the most common ROS signaling effectors, hydrogen peroxide and superoxide, to begin the identification and elucidation of the specific molecular targets by which WMFs affect tissue growth. Together, our data reveal that the cellular effects of WMF exposure are highly dependent on ROS, and we identify superoxide as a specific ROS being modulated. Altogether, these data highlight the possibilities of using WMF exposures to control ROS signaling in vivo and represent an exciting new area of research. 
    more » « less
  5. null (Ed.)
    Negative regulators of adult neurogenesis are of particular interest as targets to enhance neuronal repair, but few have yet been identified. Planarians can regenerate their entire CNS using pluripotent adult stem cells, and this process is robustly regulated to ensure that new neurons are produced in proper abundance. Using a high-throughput pipeline to quantify brain chemosensory neurons, we identify the conserved tyrosine kinase tec-1 as a negative regulator of planarian neuronal regeneration. tec-1RNAi increased the abundance of several CNS and PNS neuron subtypes regenerated or maintained through homeostasis, without affecting body patterning or non-neural cells. Experiments using TUNEL, BrdU, progenitor labeling, and stem cell elimination during regeneration indicate tec-1 limits the survival of newly differentiated neurons. In vertebrates, the Tec kinase family has been studied extensively for roles in immune function, and our results identify a novel role for tec-1 as negative regulator of planarian adult neurogenesis. 
    more » « less