skip to main content


Title: Thermal-model-based characterization of heavy-ion-collision systems at chemical freeze-out
We investigate the chemical freeze-out in heavy-ion collisions (HICs) and the impact of the hadronic spectrum on thermal model analyses [1, 2]. Detailed knowledge of the hadronic spectrum is still an open question, which has phenomenological consequences on the study of HICs. By varying the number of resonances included in Hadron Resonance Gas (HRG) Model calculations, we can shed light on which particles may be produced. Furthermore, we study the influence of the number of states on the so-called two flavor freezeout scenario, in which strange and light particles can freeze-out separately. We consider results for the chemical freeze-out parameters obtained from thermal model fits and from calculating net-particle fluctuations. We will show the effect of using one global temperature to fit all particles and alternatively, allowing particles with and without strange quarks to freeze-out separately.  more » « less
Award ID(s):
1654219
NSF-PAR ID:
10336541
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
David, G.; Garg, P.; Kalweit, A.; Mukherjee, S.; Ullrich, T.; Xu, Z.; Yoo, I.-K.
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
259
ISSN:
2100-014X
Page Range / eLocation ID:
11010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The large values and constituent-quark-number scaling of the elliptic flow of low- D mesons imply that charm quarks, initially produced through hard processes, might be partially thermalized through strong interactions with quark-gluon plasma (QGP) in high-energy heavy-ion collisions. To quantify the degree of thermalization of low- charm quarks, we compare the meson spectra and elliptic flow from a hydrodynamic model to experimental data as well as transport model simulations. We use an effective charm chemical potential at the freeze-out temperature to account for the initial charm quark production from hard processes and assume that they are thermalized in the local comoving frame of the medium before freeze-out. mesons are sampled statistically from the freeze-out hyper-surface of the expanding QGP as described by the event-by-event (3+1)D viscous hydrodynamic model CLVisc. Both the hydrodynamic and transport models can describe the elliptic flow of mesons at GeV/ c as measured in Au+Au collisions at GeV. Though the experimental data on spectra are consistent with the hydrodynamic result at small GeV/ c , they deviate from the hydrodynamic model at high transverse momentum, GeV/ c . The diffusion and parton energy loss mechanisms in the transport model can describe the measured spectra reasonably well within the theoretical uncertainty. Our comparative study indicates that charm quarks only approach local thermal equilibrium at small , even though they acquire sizable elliptic flow comparable to light-quark hadrons at both small and intermediate . 
    more » « less
  2. BACKGROUND Landau’s Fermi liquid theory provides the bedrock on which our understanding of metals has developed over the past 65 years. Its basic premise is that the electrons transporting a current can be treated as “quasiparticles”—electron-like particles whose effective mass has been modified, typically through interactions with the atomic lattice and/or other electrons. For a long time, it seemed as though Landau’s theory could account for all the many-body interactions that exist inside a metal, even in the so-called heavy fermion systems whose quasiparticle mass can be up to three orders of magnitude heavier than the electron’s mass. Fermi liquid theory also lay the foundation for the first successful microscopic theory of superconductivity. In the past few decades, a number of new metallic systems have been discovered that violate this paradigm. The violation is most evident in the way that the electrical resistivity changes with temperature or magnetic field. In normal metals in which electrons are the charge carriers, the resistivity increases with increasing temperature but saturates, both at low temperatures (because the quantized lattice vibrations are frozen out) and at high temperatures (because the electron mean free path dips below the smallest scattering pathway defined by the lattice spacing). In “strange metals,” by contrast, no saturation occurs, implying that the quasiparticle description breaks down and electrons are no longer the primary charge carriers. When the particle picture breaks down, no local entity carries the current. ADVANCES A new classification of metallicity is not a purely academic exercise, however, as strange metals tend to be the high-temperature phase of some of the best superconductors available. Understanding high-temperature superconductivity stands as a grand challenge because its resolution is fundamentally rooted in the physics of strong interactions, a regime where electrons no longer move independently. Precisely what new emergent phenomena one obtains from the interactions that drive the electron dynamics above the temperature where they superconduct is one of the most urgent problems in physics, attracting the attention of condensed matter physicists as well as string theorists. One thing is clear in this regime: The particle picture breaks down. As particles and locality are typically related, the strange metal raises the distinct possibility that its resolution must abandon the basic building blocks of quantum theory. We review the experimental and theoretical studies that have shaped our current understanding of the emergent strongly interacting physics realized in a host of strange metals, with a special focus on their poster-child: the copper oxide high-temperature superconductors. Experiments are highlighted that attempt to link the phenomenon of nonsaturating resistivity to parameter-free universal physics. A key experimental observation in such materials is that removing a single electron affects the spectrum at all energy scales, not just the low-energy sector as in a Fermi liquid. It is observations of this sort that reinforce the breakdown of the single-particle concept. On the theoretical side, the modern accounts that borrow from the conjecture that strongly interacting physics is really about gravity are discussed extensively, as they have been the most successful thus far in describing the range of physics displayed by strange metals. The foray into gravity models is not just a pipe dream because in such constructions, no particle interpretation is given to the charge density. As the breakdown of the independent-particle picture is central to the strange metal, the gravity constructions are a natural tool to make progress on this problem. Possible experimental tests of this conjecture are also outlined. OUTLOOK As more strange metals emerge and their physical properties come under the scrutiny of the vast array of experimental probes now at our disposal, their mysteries will be revealed and their commonalities and differences cataloged. In so doing, we should be able to understand the universality of strange metal physics. At the same time, the anomalous nature of their superconducting state will become apparent, offering us hope that a new paradigm of pairing of non-quasiparticles will also be formalized. The correlation between the strength of the linear-in-temperature resistivity in cuprate strange metals and their corresponding superfluid density, as revealed here, certainly hints at a fundamental link between the nature of strange metallicity and superconductivity in the cuprates. And as the gravity-inspired theories mature and overcome the challenge of projecting their powerful mathematical machinery onto the appropriate crystallographic lattice, so too will we hope to build with confidence a complete theory of strange metals as they emerge from the horizon of a black hole. Curved spacetime with a black hole in its interior and the strange metal arising on the boundary. This picture is based on the string theory gauge-gravity duality conjecture by J. Maldacena, which states that some strongly interacting quantum mechanical systems can be studied by replacing them with classical gravity in a spacetime in one higher dimension. The conjecture was made possible by thinking about some of the fundamental components of string theory, namely D-branes (the horseshoe-shaped object terminating on a flat surface in the interior of the spacetime). A key surprise of this conjecture is that aspects of condensed matter systems in which the electrons interact strongly—such as strange metals—can be studied using gravity. 
    more » « less
  3. Abstract The early universe may have contained internally thermalized dark sectors that were decoupled from the Standard Model. In such scenarios, the relic dark thermal bath, composed of the lightest particle in the dark sector, can give rise to an epoch of early matter domination prior to Big Bang Nucleosynthesis, which has a potentially observable impact on the smallest dark matter structures. This lightest dark particle can easily and generically have number-changing self-interactions that give rise to “cannibal” behavior. We consider cosmologies where an initially sub-dominant cannibal species comes to temporarily drive the expansion of the universe, and we provide a simple map between the particle properties of the cannibal species and the key features of the enhanced dark matter perturbation growth in such cosmologies. We further demonstrate that cannibal self-interactions can determine the small-scale cutoff in the matter power spectrum even when the cannibal self-interactions freeze out prior to cannibal domination. 
    more » « less
  4. A bstract Hadronic τ decays are studied as probe of new physics. We determine the dependence of several inclusive and exclusive τ observables on the Wilson coefficients of the low-energy effective theory describing charged-current interactions between light quarks and leptons. The analysis includes both strange and non-strange decay channels. The main result is the likelihood function for the Wilson coefficients in the tau sector, based on the up-to-date experimental measurements and state-of-the-art theoretical techniques. The likelihood can be readily combined with inputs from other low-energy precision observables. We discuss a combination with nuclear beta, baryon, pion, and kaon decay data. In particular, we provide a comprehensive and model-independent description of the new physics hints in the combined dataset, which are known under the name of the Cabibbo anomaly. 
    more » « less
  5. ABSTRACT Using blazar light curves from the optical All-Sky Automated Survey for Supernovae (ASAS-SN) and the γ-ray Fermi-LAT telescope, we performed the most extensive statistical correlation study between both bands, using a sample of 1180 blazars. This is almost an order of magnitude larger than other recent studies. Blazars represent more than 98 per cent of the AGNs detected by Fermi-LAT and are the brightest γ-ray sources in the extragalactic sky. They are essential for studying the physical properties of astrophysical jets from central black holes. However, their γ-ray flare mechanism is not fully understood. Multiwavelength correlations help constrain the dominant mechanisms of blazar variability. We search for temporal relationships between optical and γ-ray bands. Using a Bayesian Block Decomposition, we detect 1414 optical and 510 γ-ray flares, we find a strong correlation between both bands. Among all the flares, we find 321 correlated flares from 133 blazars, and derive an average rest-frame time delay of only 1.1$_{-8.5}^{+7.1}$ d, with no difference between the flat-spectrum radio quasars, BL Lacertae-like objects or low, intermediate, and high-synchrotron peaked blazar classes. Our time-delay limit rules out the hadronic proton-synchrotron model as the driver for non-orphan flares and suggests a leptonic single-zone model. Limiting our search to well-defined light curves and removing 976 potential but unclear ‘orphan’ flares, we find 191 (13 per cent) and 115 (22 per cent) clear ‘orphan’ optical and γ-ray flares. The presence of ‘orphan’ flares in both bands challenges the standard one-zone blazar flare leptonic model and suggests multizone synchrotron sites or a hadronic model for some blazars. 
    more » « less