skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Mediating Students’ Scientific Argumentation to Support Model Revision
Scientific argumentation and modeling are both core practices in learning and doing science. However, they are challenging for students. Although there is considerable literature about scientific argumentation or modeling practice in K-12 science, there are limited studies on how engaging students in modeling and scientific argumentation might be mutually supportive. This study aims to explore how 5th graders can be supported by our designed mediators as they engage in argumentation and modeling, in particular, model revision. We implemented a virtual afterschool science club to examine how our modeling tool – MEME (Model and Evidence Mapping Environment), provided evidence, peer comments, and other mediators influenced students in learning about aquatic ecosystems through developing a model. While both groups that we examined constructed strong arguments and developed good models, we show how the mediators played different roles in helping them be successful.  more » « less
Award ID(s):
1761019
PAR ID:
10336588
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
A. Weinberger; W. Chen; D.Hernández-Leo; D., B. Chen
Date Published:
Journal Name:
Computersupported collaborative learning
ISSN:
1573-4552
Page Range / eLocation ID:
107-114
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Shaffer, Justin (Ed.)
    ABSTRACT Argumentation is vital in the development of scientific knowledge, and students who can argue from evidence and support their claims develop a deeper understanding of science. In this study, the Argument-Driven Inquiry instruction model was implemented in a two-semester sequence of introductory biology laboratories. Student’s scientific argumentation sessions were video recorded and analyzed using the Assessment of Scientific Argumentation in the Classroom observation protocol. This protocol separates argumentation into three subcategories: cognitive (how the group develops understanding), epistemic (how consistent the group’s process is with the culture of science), and social (how the group members interact with each other). We asked whether students are equally skilled in all subcategories of argumentation and how students’ argumentation skills differ based on lab exercise and course. Students scored significantly higher on the social than the cognitive and epistemic subcategories of argumentation. Total argumentation scores were significantly different between the two focal investigations in Biology Laboratory I but not between the two focal investigations in Biology Laboratory II. Therefore, student argumentation skills were not consistent across content; the design of the lab exercises and their implementation impacted the level of argumentation that occurred. These results will ultimately aid in the development and expansion of Argument-Driven Inquiry instructional models, with the goal of further enhancing students’ scientific argumentation skills and understanding of science. 
    more » « less
  2. The Next Generation Science Standards [1] recognized evidence-based argumentation as one of the essential skills for students to develop throughout their science and engineering education. Argumentation focuses students on the need for quality evidence, which helps to develop their deep understanding of content [2]. Argumentation has been studied extensively, both in mathematics and science education but also to some extent in engineering education (see for example [3], [4], [5], [6]). After a thorough search of the literature, we found few studies that have considered how teachers support collective argumentation during engineering learning activities. The purpose of this program of research was to support teachers in viewing argumentation as an important way to promote critical thinking and to provide teachers with tools to implement argumentation in their lessons integrating coding into science, technology, engineering, and mathematics (which we refer to as integrative STEM). We applied a framework developed for secondary mathematics [7] to understand how teachers support collective argumentation in integrative STEM lessons. This framework used Toulmin’s [8] conceptualization of argumentation, which includes three core components of arguments: a claim (or hypothesis) that is based on data (or evidence) accompanied by a warrant (or reasoning) that relates the data to the claim [9], [8]. To adapt the framework, video data were coded using previously established methods for analyzing argumentation [7]. In this paper, we consider how the framework can be applied to an elementary school teacher’s classroom interactions and present examples of how the teacher implements various questioning strategies to facilitate more productive argumentation and deeper student engagement. We aim to understand the nature of the teacher’s support for argumentation—contributions and actions from the teacher that prompt or respond to parts of arguments. In particular, we look at examples of how the teacher supports students to move beyond unstructured tinkering (e.g., trial-and-error) to think logically about coding and develop reasoning for the choices that they make in programming. We also look at the components of arguments that students provide, with and without teacher support. Through the use of the framework, we are able to articulate important aspects of collective argumentation that would otherwise be in the background. The framework gives both eyes to see and language to describe how teachers support collective argumentation in integrative STEM classrooms. 
    more » « less
  3. null (Ed.)
    Argumentation enables students to engage in real world scientific practices by rationalizing claims grounded in supporting evidence. Student engagement in scientific argumentation activates the negotiation process by which students develop and defend evidence-based claims. Little is known, however, on the intricate process and potential patterns of negotiation between students during scientific argumentation. The present study seeks to fill this gap by exploring how a group of university science education students negotiated when evaluating the relationship between lines of evidence and alternative explanatory models of a phenomena (i.e., climate change). This research, theoretically grounded in social constructionism, used Halliday's model of Systemic Functional Linguistics (SFL) within a discourse analysis framework. The authors analyzed transcripts of student conversations during a model-evidence link activity to gain insights into patterns of negotiation. An interpersonal analysis centering on mood and moves revealed students' ability to engage in the negotiation component of scientific argumentation to make assertions about relations between evidence and models. Effective collaboration resulting in group consensus of the relationship (categorized as supports, strongly supports, or contradicts) was facilitated by the use of interrogatives, modulation, and a balanced contribution between group members. Conversely, negotiation which did not reach consensus featured less contribution between group members. Conversely, negotiation which did not reach consensus featured less balanced discussion among group members, contained more interruptions, more conflict moves, and double polarity clauses. 
    more » « less
  4. Critical thinking skills are best taught as students participate in the scientific practice of argumentation. When engaged in scientific argumentation, students are expected to engage in active listening and social collaboration through the process of negotiation and consensus building. Socioscientific issues are ideally suited for such activities. Model-Evidence-Link (MEL) diagrams provide an ideal scaffold for helping students learn to build arguments that can help them make connections between evidence and scientific explanations. In these activities students compare competing models by making plausibility judgements, then comparing how well scientific evidence supports each model. In research-based activities, these scaffolds have been shown to help students better understand scientific concepts, to shift students’ plausibility judgments, and to provide insights into how students negotiate consensus through argumentation. In this article we share both the resources and instructional methods for including MEL diagrams in the middle school classroom. 
    more » « less
  5. Recently there have been calls to integrate engineering design experiences to support students’ scientific understanding. There is a need for instructional strategies in which learners are encouraged to identify and reflect on ways scientific principles can be applied to inform their designs and evaluate alternative designs. Studies show that the inclusion of contrasting cases can improve students’ conceptual understanding and reasoning. Yet, such tasks depend on how they are scaffolded. In this study, pre-service elementary teachers in a conceptual physics course analyzed contrasting solutions to a design problem. Two forms of scaffolds were embedded to facilitate case evaluation: 1) identify similarities and differences and 2) evaluate and produce an argument for a “good” design solution. We investigated the scientific ideas that the participants used as they contrasted multiple design solutions and the impact of the two approaches in students’ understanding of heat transfer. We found no significant differences in students’ conceptual understanding, but the argumentation condition had a significantly larger number of scientific ideas ‘cited’, ‘explained’ or ‘applied’ in their solutions,. The results suggest that contrasting designs with argumentation may be a promising intervention to facilitate students to use science concepts in engineering design. Future work is needed in order to investigate better scaffolds that can help students’ increase in conceptual learning. 
    more » « less