skip to main content


Title: County-level crop nitrogen budget history in the US during 1970-2019
This document describes the datasets used for “Half-century history of crop nitrogen use efficiency in the conterminous United States: Variations over time, space and crop types”. The datasets include county-level total nitrogen (N) input rate, nitrogen use efficiency, crop recovered N and N surplus of eight crop types,in the U.S. from 1970 to 2019. The datasets reproduce the results of the manuscript and can be used to explore other topics.
 
more » « less
Award ID(s):
1903722
PAR ID:
10336601
Author(s) / Creator(s):
; ;
Publisher / Repository:
figshare
Date Published:
Subject(s) / Keyword(s):
Environmental Science
Format(s):
Medium: X Size: 26725754 Bytes
Size(s):
26725754 Bytes
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nitrogen (N) deposition is a significant nutrient input to cropland and consequently important for the evaluation of N budgets and N use efficiency (NUE) at different scales and over time. However, the spatiotemporal coverage of N deposition measurements is limited globally, whereas modeled N deposition values carry uncertainties. Here, we reviewed existing methods and related data sources for quantifying N deposition inputs to crop production on a national scale. We utilized different data sources to estimate N deposition input to crop production at national scale and compared our estimates with 14 N budget datasets, as well as measured N deposition data from observation networks in 9 countries. We created four datasets of N deposition inputs on cropland during 1961–2020 for 236 countries. These products showed good agreement for the majority of countries and can be used in the modeling and assessment of NUE at national and global scales. One of the datasets is recommended for general use in regional to global N budget and NUE estimates.

     
    more » « less
  2. Nitrogen (N) fertilization has been one of the main practices used to increase yield of agricultural crops worldwide. In developed countries, N supplementation in agriculture has increased by more than 120% between the 1960s and 2020. It is estimated that N applications will continue to rise as world population is expected to grow by 3 billion people within the next 80 years. Moreover, a 56% increase in crop yield will be needed to sustain the predicted population growth. However, pollution by excess N runoff from agriculture remains a global concern. A holistic approach is thus needed to integrate knowledge of plant nitrogen use efficiency with management practices. 
    more » « less
  3. Abstract

    China increasingly relies on agricultural imports, driven by its rising population and income, as well as dietary shifts. International trade offers an opportunity to relieve pressures on resource depletion and pollution, such as nitrogen (N) pollution, while it poses multiple socioeconomic challenges, such as food availability. To quantify such trade-offs considering the roles of different crop types, we developed a unique crop-specific N budget database and assessed the impacts of the crop trade on multiple sustainability concerns including N pollution caused by crop production, crop land area, independence of food supply, and trade expenditures. We quantified the ‘virtual’ N inputs and harvested areas, which are the amount of N inputs and land resources used in exporting countries for China’s crop import. In addition, we proposed the concepts of ‘alternative’ N inputs and harvested area to quantify the resources needed if imported crops were produced in China. By comparing results from ‘alternative’ and ‘virtual’ concepts, we assessed the role of trade in Chinese crops over the past 30 years (i.e. 1986–2015) in alleviating N pollution and saving cropland in China and the world. Crop imports accounted for 31% of Chinese crop N consumption in 2015, and these crop imports eased the need for an additional cropland area of 62 million ha. It also avoided an N surplus by 56 and 36 Tg (Tg = 109kg) for China and the world respectively but led to $621 billion crop trade expenditures over the 30 year period. The N pollution damage avoided by crop imports in economic terms was priced at $22 ± 16 billion in 2015, which is lower than the crop trade expenditures but may be surpassed in the future with the development of the Chinese economy. Optimizing a crop trade portfolio can shift domestic production from N-intensive crop production (e.g. maize, fruits, and vegetables) to N-efficient crop production (e.g. soybeans), and consequently mitigate an N surplus by up to 12%. Improving N use efficiency for individual crops can further increase the mitigation potential of N surplus to 30%–50%, but requires technology advancement and policy incentives.

     
    more » « less
  4. Dataset Abstract This study provides a gradient of 9 different rates of nitrogen fertilization under rainfed and irrigated conditions. Irrigation began in 2003. Corn was grown from 2000-2005 and subsequently the crop rotation (wheat, corn, soybean) followed the crop of the LTER main site. Nitrogen applications differ by crop after 2007. The experiment was moved to its current location on the LTER main site in 2005. The experiment location/history are explained here. Plots are 5×30 m arranged in each of 4 replicate blocks . Crop yields, nitrous oxide and soil temperature, moisture and nitrogen data are available for this study. original data source http://lter.kbs.msu.edu/datasets/36 
    more » « less
  5. Nitrogen (N) and Water (W) - two resources critical for crop productivity – are becoming increasingly limited in soils globally. To address this issue, we aim to uncover the gene regulatory networks (GRNs) that regulate nitrogen use efficiency (NUE) - as a function of water availability - in Oryza sativa, a staple for 3.5 billion people. In this study, we infer and validate GRNs that correlate with rice NUE phenotypes affected by N-by-W availability in the field. We did this by exploiting RNA-seq and crop phenotype data from 19 rice varieties grown in a 2x2 N-by-W matrix in the field. First, to identify gene-to-NUE field phenotypes, we analyzed these datasets using weighted gene co-expression network analysis (WGCNA). This identified two network modules ("skyblue" & "grey60") highly correlated with NUE grain yield (NUEg). Next, we focused on 90 TFs contained in these two NUEg modules and predicted their genome-wide targets using the N-and/or-W response datasets using a random forest network inference approach (GENIE3). Next, to validate the GENIE3 TF→target gene predictions, we performed Precision/Recall Analysis (AUPR) using nine datasets for three TFs validated in planta . This analysis sets a precision threshold of 0.31, used to "prune" the GENIE3 network for high-confidence TF→target gene edges, comprising 88 TFs and 5,716 N-and/or-W response genes. Next, we ranked these 88 TFs based on their significant influence on NUEg target genes responsive to N and/or W signaling. This resulted in a list of 18 prioritized TFs that regulate 551 NUEg target genes responsive to N and/or W signals. We validated the direct regulated targets of two of these candidate NUEg TFs in a plant cell-based TF assay called TARGET, for which we also had in planta data for comparison. Gene ontology analysis revealed that 6/18 NUEg TFs - OsbZIP23 (LOC_Os02g52780), Oshox22 (LOC_Os04g45810), LOB39 (LOC_Os03g41330), Oshox13 (LOC_Os03g08960), LOC_Os11g38870, and LOC_Os06g14670 - regulate genes annotated for N and/or W signaling. Our results show that OsbZIP23 and Oshox22, known regulators of drought tolerance, also coordinate W-responses with NUEg. This validated network can aid in developing/breeding rice with improved yield on marginal, low N-input, drought-prone soils. 
    more » « less