skip to main content


Title: Fast and Scalable Quantum Information Processing with Two‐Electron Atoms in Optical Tweezer Arrays
Abstract

Atomic systems, ranging from trapped ions to ultracold and Rydberg atoms, offer unprecedented control over both internal and external degrees of freedom at the single‐particle level. They are considered among the foremost candidates for realizing quantum simulation and computation platforms that can outperform classical computers at specific tasks. In this work, a realistic experimental toolbox for quantum information processing with neutral alkaline‐earth‐like atoms in optical tweezer arrays is described. In particular, a comprehensive and scalable architecture based on a programmable array of alkaline‐earth‐like atoms is proposed, exploiting their electronic clock states as a precise and robust auxiliary degree of freedom, and thus allowing for efficient all‐optical one‐ and two‐qubit operations between nuclear spin qubits. The proposed platform promises excellent performance thanks to high‐fidelity register initialization, rapid spin‐exchange gates, and error detection in read‐out. As a benchmark and application example, the expected fidelity of an increasing number of subsequent SWAP gates for optimal parameters is computed, which can be used to distribute entanglement between remote atoms within the array.

 
more » « less
NSF-PAR ID:
10460850
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Quantum Technologies
Volume:
2
Issue:
3-4
ISSN:
2511-9044
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We propose a new scalable platform for quantum computing (QC)—an array of optically trapped symmetric-top molecules (STMs) of the alkaline earth monomethoxide (MOCH3) family. Individual STMs form qubits, and the system is readily scalable to 100–1000 qubits. STM qubits have desirable features for QC compared to atoms and diatomic molecules. The additional rotational degree of freedom about the symmetric-top axis gives rise to closely spaced opposite parityK-doublets that allow full alignment at low electric fields, and the hyperfine structure naturally provides magnetically insensitive states with switchable electric dipole moments. These features lead to much reduced requirements for electric field control, provide minimal sensitivity to environmental perturbations, and allow for 2-qubit interactions that can be switched on at will. We examine in detail the internal structure of STMs relevant to our proposed platform, taking into account the full effective molecular Hamiltonian including hyperfine interactions, and identify useable STM qubit states. We then examine the effects of the electric dipolar interaction in STMs, which not only guide the design of high-fidelity gates, but also elucidate the nature of dipolar exchange in STMs. Under realistic experimental parameters, we estimate that the proposed QC platform could yield gate errors at the 10−3level, approaching that required for fault-tolerant QC.

     
    more » « less
  2. Abstract

    The large scale control over thousands of quantum emitters desired by quantum network technology is limited by the power consumption and cross-talk inherent in current microwave techniques. Here we propose a quantum repeater architecture based on densely-packed diamond color centers (CCs) in a programmable electrode array, with quantum gates driven by electric or strain fields. This ‘field programmable spin array’ (FPSA) enables high-speed spin control of individual CCs with low cross-talk and power dissipation. Integrated in a slow-light waveguide for efficient optical coupling, the FPSA serves as a quantum interface for optically-mediated entanglement. We evaluate the performance of the FPSA architecture in comparison to a routing-tree design and show an increased entanglement generation rate scaling into the thousand-qubit regime. Our results enable high fidelity control of dense quantum emitter arrays for scalable networking.

     
    more » « less
  3. Ultracold molecules have been proposed as a candidate platform for quantum science and precision measurement because of their rich internal structures and interactions. Direct laser-cooling promises to be a rapid and efficient way to bring molecules to ultracold temperatures. However, for trapped molecules, laser-cooling to the quantum motional ground state remains an outstanding challenge. A technique capable of reaching the motional ground state is Raman sideband cooling, first demonstrated in trapped ions and atoms. Here we demonstrate Raman sideband cooling of CaF molecules trapped in an optical tweezer array. Our protocol does not rely on high magnetic fields and preserves the purity of molecular internal states. We measure a high ground-state fraction and achieve low motional entropy per particle. The low temperatures we obtain could enable longer coherence times and higher-fidelity molecular qubit gates, desirable for quantum information processing and quantum simulation. With further improvements, Raman sideband cooling will also provide a route to quantum degeneracy of large molecular samples, which could be extendable to polyatomic molecular species. 
    more » « less
  4. Optically trapped neutral atoms are one of several leading approaches for scalable quantum information processing. When prepared in electronic ground states in deep optical lattices atomic qubits are weakly interacting with long coherence times. Excitation to Rydberg states turns on strong interactions which enable fast gates and entanglement generation. I will present quantum logic experiments with a 2D array of blue detuned lines that traps more than 100 Cesium atom qubits. The array is randomly loaded from a MOT and an optical tweezer steered by a 2D acousto-optic deflector is used to ll subregions of the array. Progress towards high fidelity entangling gates based on Rydberg excitation lasers with lower noise, and optimized optical polarization and magnetic eld settings will be shown. 
    more » « less
  5. The generation of long-lived entanglement on an optical clock transition is a key requirement to unlocking the promise of quantum metrology. Arrays of neutral atoms constitute a capable quantum platform for accessing such physics, where Rydberg-based interactions may generate entanglement between individually controlled and resolved atoms. To this end, we leverage the programmable state preparation afforded by optical tweezers along with the efficient strong confinement of a 3d optical lattice to prepare an ensemble of strontium atom pairs in their motional ground state. We engineer global single-qubit gates on the optical clock transition and two-qubit entangling gates via adiabatic Rydberg dressing, enabling the generation of Bell states, |ψ⟩=12√(|gg⟩+i|ee⟩), with a fidelity of F=92.8(2.0)%. For use in quantum metrology, it is furthermore critical that the resulting entanglement be long lived; we find that the coherence of the Bell state has a lifetime of τbc=4.2(6) s via parity correlations and simultaneous comparisons between entangled and unentangled ensembles. Such Bell states can be useful for enhancing metrological stability and bandwidth. Further rearrangement of hundreds of atoms into arbitrary configurations using optical tweezers will enable implementation of many-qubit gates and cluster state generation, as well as explorations of the transverse field Ising model and Hubbard models with entangled or finite-range-interacting tunnellers. 
    more » « less