skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Subatomic species transport through atomically thin membranes: Present and future applications
Atomically thin two-dimensional materials present opportunities for selective transport of subatomic species. The pristine lattice of monolayer graphene and hexagonal boron nitride, although impermeable to helium atoms, allows for transmission of electrons and permits transport of thermal protons and its isotopes. We discuss advances in selective subatomic species transport through atomically thin membranes and their potential for transformative advances in energy storage and conversion, isotope separations, in situ electron microscopy and spectroscopy, and future electronic applications. We outline technological challenges and opportunities for these applications and discuss early adoption in imaging and spectroscopy that are starting to become commercially available, as well as emerging applications in the nuclear industry and future application potential in grid storage, clean/green transportation, environmental remediation, and others.  more » « less
Award ID(s):
1944134
PAR ID:
10336643
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Science
Volume:
374
Issue:
6568
ISSN:
0036-8075
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Selective proton (H + ) permeation through the atomically thin lattice of graphene and other 2D materials offers new opportunities for energy conversion/storage and novel separations. Practical applications necessitate scalable synthesis via approaches such as chemical vapor deposition (CVD) that inevitably introduce sub-nanometer defects, grain boundaries and wrinkles, and understanding their influence on H + transport and selectivity for large-area membranes is imperative but remains elusive. Using electrically driven transport of H + and potassium ions (K + ) we probe the influence of intrinsic sub-nanometer defects in monolayer CVD graphene across length-scales for the first time. At the micron scale, the areal H + conductance of CVD graphene (∼4.5–6 mS cm −2 ) is comparable to that of mechanically exfoliated graphene indicating similarly high crystalline quality within a domain, albeit with K + transport (∼1.7 mS cm −2 ). However, centimeter-scale Nafion|graphene|Nafion devices with several graphene domains show areal H + conductance of ∼339 mS cm −2 and K + conductance of ∼23.8 mS cm −2 (graphene conductance for H + is ∼1735 mS cm −2 and for K + it is ∼47.6 mS cm −2 ). Using a mathematical-transport-model and Nafion filled polycarbonate track etched supports, we systematically deconstruct the observed orders of magnitude increase in H + conductance for centimeter-scale CVD graphene. The mitigation of defects (>1.6 nm), wrinkles and tears via interfacial polymerization results in a conductance of ∼1848 mS cm −2 for H + and ∼75.3 mS cm −2 for K + (H + /K + selectivity of ∼24.5) via intrinsic sub-nanometer proton selective defects in CVD graphene. We demonstrate atomically thin membranes with significantly higher ionic selectivity than state-of-the-art proton exchange membranes while maintaining comparable H + conductance. Our work provides a new framework to assess H + conductance and selectivity of large-area 2D membranes and highlights the role of intrinsic sub-nanometer proton selective defects for practical applications. 
    more » « less
  2. Incorporating atomically thin graphene into proton exchange membranes (PEMs)viascalable and facile processes presents the potential for advancing energy conversion and storage applications while mitigating persistent issues of undesired species crossover. 
    more » « less
  3. Abstract Constructing bulk graphene materials with well‐reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In this article, the recent progress in the fabrications and applications of sterically continuous porous graphene with designable microstructures, chemistries, and properties for energy storage and conversion are reviewed. Both template‐based and template‐free methods have been developed to synthesize the 3D continuously porous graphene, which typically has the microstructure reminiscent of pseudo‐periodic minimal surfaces. The 3D graphene can well preserve the properties of 2D graphene of being highly conductive, surface abundant, and mechanically robust, together with unique 2D electronic behaviors. Additionally, the bicontinuous porosity and large curvature offer new functionalities, such as rapid mass transport, ample open space, mechanical flexibility, and tunable electric/thermal conductivity. Particularly, the 3D curvature provides a new degree of freedom for tailoring the catalysis and transport properties of graphene. The 3D graphene with those extraordinary properties has shown great promises for a wide range of applications, especially for energy conversion and storage. This article overviews the recent advances made in addressing the challenges of developing 3D continuously porous graphene, the benefits and opportunities of the new materials for energy‐related applications, and the remaining challenges that warrant future study. 
    more » « less
  4. null (Ed.)
    The discovery and control of new phases of matter is a central endeavour in materials research. The emergence of atomically thin 2D materials, such as transition-metal dichalcogenides and monochalcogenides, has allowed the study of diffusive, displacive and quantum phase transitions in 2D. In this Review, we discuss the thermodynamic and kinetic features of 2D phase transitions arising from dimensionality confinement, elasticity, electrostatics, defects and chemistry unique to 2D materials. We highlight polymorphic, ferroic and high-temperature diffusive phase changes, and examine the technological potential of controlled 2D phase transitions. Finally, we give an outlook to future opportunities in the study and applications of 2D phase transitions, and identify key challenges that remain to be addressed. 
    more » « less
  5. Abstract Porous graphene and other atomically thin 2D materials are regarded as highly promising membrane materials for high‐performance gas separations due to their atomic thickness, large‐scale synthesizability, excellent mechanical strength, and chemical stability. When these atomically thin materials contain a high areal density of gas‐sieving nanoscale pores, they can exhibit both high gas permeances and high selectivities, which is beneficial for reducing the cost of gas‐separation processes. Here, recent modeling and experimental advances in nanoporous atomically thin membranes for gas separations is discussed. The major challenges involved, including controlling pore size distributions, scaling up the membrane area, and matching theory with experimental results, are also highlighted. Finally, important future directions are proposed for real gas‐separation applications of nanoporous atomically thin membranes. 
    more » « less