Monolayer graphene growth on liquid copper (Cu) has attracted attention due to advantages of a flat/smooth catalytic growth surface, high synthesis temperature (>1080 °C) as well as the possibility of forming graphene domains that are mobile on the liquid Cu with potential to minimize grain boundary defects and self-assemble into a continuous monolayer film. However, the quality of monolayer graphene grown on liquid copper and its suitability for size-selective ionic/molecular membrane separations has not been evaluated/studied. Here, we probe the quality of monolayer graphene grown on liquid Cu (via a metallurgical process, HSMG®) using Scanning Electron Microscope (SEM), High-resolution transmission electron microscope (HR-TEM), Raman spectroscopy and report on a facile approach to assess intrinsic sub-nanometer to nanometer-scale defects over centimeter-scale areas. We demonstrate high transfer yields of monolayer graphene (>93% coverage) from the growth substrate to polyimide track etched membrane (PITEM, pore diameter ∼200 nm) supports to form centimeter-scale atomically thin membranes. Next, we use pressure-driven transport of ethanol to probe defects > 60 nm and diffusion-driven transport of analytes (KCl ∼0.66 nm, L-Tryptophan ∼0.7–0.9 nm, Vitamin B12 ∼1–1.5 nm and Lysozyme ∼3.8–4 nm) to probe nanoscale and sub-nanometer scale defects. Diffusive transport confirms the presence of intrinsic sub-nanometer to nanometer scale defects in monolayer graphene grown on liquid Cu are no less than that in high-quality graphene synthesized via chemical vapor deposition (CVD) on solid Cu. Our work not only benchmarks quality of graphene grown on liquid copper for membrane applications but also provides fundamental insights into the origin of intrinsic defects in large-area graphene synthesized via bottom-up processes for membrane applications.
- Award ID(s):
- 1944134
- PAR ID:
- 10336644
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- ISSN:
- 2050-7488
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Direct synthesis of graphene with well‐defined nanoscale pores over large areas can transform the fabrication of nanoporous atomically thin membranes (NATMs) and greatly enhance their potential for practical applications. However, scalable bottom‐up synthesis of continuous sheets of nanoporous graphene that maintain integrity over large areas has not been demonstrated. Here, it is shown that a simple reduction in temperature during chemical vapor deposition (CVD) on Cu induces in‐situ formation of nanoscale defects (≤2–3 nm) in the graphene lattice, enabling direct and scalable synthesis of nanoporous monolayer graphene. By solution‐casting of hierarchically porous polyether sulfone supports on the as‐grown nanoporous CVD graphene, large‐area (>5 cm2) NATMs for dialysis applications are demonstrated. The synthesized NATMs show size‐selective diffusive transport and effective separation of small molecules and salts from a model protein, with ≈2–100× increase in permeance along with selectivity better than or comparable to state‐of‐the‐art commercially available polymeric dialysis membranes. The membranes constitute the largest fully functional NATMs fabricated via bottom‐up nanopore formation, and can be easily scaled up to larger sizes permitted by CVD synthesis. The results highlight synergistic benefits in blending traditional membrane casting with bottom‐up pore creation during graphene CVD for advancing NATMs toward practical applications.
-
null (Ed.)Scalable graphene synthesis and facile large-area membrane fabrication are imperative to advance nanoporous atomically thin membranes (NATMs) for molecular separations. Although chemical vapor deposition (CVD) allows for roll-to-roll high-quality monolayer graphene synthesis, facile transfer with atomically clean interfaces to porous supports for large-area NATM fabrication remains extremely challenging. Sacrificial polymer scaffolds commonly used for graphene transfer typically leave polymer residues detrimental to membrane performance and transfers without polymer scaffolds suffer from low yield resulting in high non-selective leakage through NATMs. Here, we systematically study the factors influencing graphene NATM fabrication and report on a novel roll-to-roll manufacturing compatible isopropanol-assisted hot lamination (IHL) process that enables scalable, facile and clean transfer of CVD graphene on to polycarbonate track etched (PCTE) supports with coverage ≥99.2%, while preserving support integrity/porosity. We demonstrate fully functional centimeter-scale graphene NATMs that show record high permeances (∼2–3 orders of magnitude higher) and better selectivity than commercially available state-of-the-art polymeric dialysis membranes, specifically in the 0–1000 Da range. Our work highlights a scalable approach to fabricate graphene NATMs for practical applications and is fully compatible with roll-to-roll manufacturing processes.more » « less
-
Abstract Single‐layer graphene containing molecular‐sized in‐plane pores is regarded as a promising membrane material for high‐performance gas separations due to its atomic thickness and low gas transport resistance. However, typical etching‐based pore generation methods cannot decouple pore nucleation and pore growth, resulting in a trade‐off between high areal pore density and high selectivity. In contrast, intrinsic pores in graphene formed during chemical vapor deposition are not created by etching. Therefore, intrinsically porous graphene can exhibit high pore density while maintaining its gas selectivity. In this work, the density of intrinsic graphene pores is systematically controlled for the first time, while appropriate pore sizes for gas sieving are precisely maintained. As a result, single‐layer graphene membranes with the highest H2/CH4separation performances recorded to date (H2permeance > 4000 GPU and H2/CH4selectivity > 2000) are fabricated by manipulating growth temperature, precursor concentration, and non‐covalent decoration of the graphene surface. Moreover, it is identified that nanoscale molecular fouling of the graphene surface during gas separation where graphene pores are partially blocked by hydrocarbon contaminants under experimental conditions, controls both selectivity and temperature dependent permeance. Overall, the direct synthesis of porous single‐layer graphene exploits its tremendous potential as high‐performance gas‐sieving membranes.
-
Abstract Atomically thin membranes comprising nanopores in a 2D material promise to surpass the performance of polymeric membranes in several critical applications, including water purification, chemical and gas separations, and energy harvesting. However, fabrication of membranes with precise pore size distributions that provide exceptionally high selectivity and permeance in a scalable framework remains an outstanding challenge. Circumventing these constraints, here, a platform technology is developed that harnesses the ability of oppositely charged polyelectrolytes to self‐assemble preferentially across larger, relatively leaky atomically thin nanopores by exploiting the lower steric hindrance of such larger pores to molecular interactions across the pores. By selectively tightening the pore size distribution in this manner, self‐assembly of oppositely charged polyelectrolytes simultaneously introduced on opposite sides of nanoporous graphene membranes is demonstrated to discriminate between nanopores to seal non‐selective transport channels, while minimally compromising smaller, water‐selective pores, thereby remarkably attenuating solute leakage. This improved membrane selectivity enables desalination across centimeter‐scale nanoporous graphene with 99.7% and >90% rejection of MgSO4and NaCl, respectively, under forward osmosis. These findings provide a versatile strategy to augment the performance of nanoporous atomically thin membranes and present intriguing possibilities of controlling reactions across 2D materials via exclusive exploitation of pore size‐dependent intermolecular interactions.