Electrification of the transportation sector relies on radical re-imagining of energy storage technologies to provide affordable, high energy density, durable and safe systems. Next generation energy storage systems will need to leverage high energy density anodes and high voltage cathodes to achieve the required performance metrics (longer vehicle range, long life, production costs, safety). Solid-state batteries (SSBs) are promising materials technology for achieving these metrics by enabling these electrode systems due to the underlying material properties of the solid electrolyte ( viz. mechanical strength, electrochemical stability, ionic conductivity). Electro-chemo-mechanical degradation in SSBs detrimentally impact the Coulombic efficiencies, capacity retention, durability and safety in SSBs restricting their practical implementation. Solid|solid interfaces in SSBs are hot-spots of dynamics that contribute to the degradation of SSBs. Characterizing and understanding the processes at the solid|solid interfaces in SSBs is crucial towards designing of resilient, durable, high energy density SSBs. This work provides a comprehensive and critical summary of the SSB characterization with a focus on in situ and operando studies. Additionally, perspectives on experimental design, emerging characterization techniques and data analysis methods are provided. This work provides a thorough analysis of current status of SSB characterization as well as highlights important avenues for futuremore »
This content will become publicly available on June 22, 2023
Kinetics or Transport: Whither Goes the Solid-State Battery Cathode?
Solid-state batteries (SSBs) hold the potential to enhance the energy density, power density, and safety of conventional lithium-ion batteries. The theoretical promise of SSBs is predicated on the mechanistic design and comprehensive analysis of various solid–solid interfaces and microstructural features within the system. The spatial arrangement and composition of constituent phases (e.g., active material, solid electrolyte, binder) in the solid-state cathode dictate critical characteristics such as solid–solid point contacts or singularities within the microstructure and percolation pathways for ionic/electronic transport. In this work, we present a comprehensive mesoscale discourse to interrogate the underlying microstructure-coupled kinetic-transport interplay and concomitant modes of resistances that evolve during electrochemical operation of SSBs. Based on a hierarchical physics-based analysis, the mechanistic implications of solid–solid point contact distribution and intrinsic transport pathways on the kinetic heterogeneity is established. Toward designing high-energy-density SSB systems, the fundamental correlation between active material loading, electrode thickness and electrochemical response has been delineated. We examine the paradigm of carbon-binder free cathodes and identify design criteria that can facilitate enhanced performance with such electrode configurations. A mechanistic design map highlighting the dichotomy in kinetic and ionic/electronic transport limitations that manifest at various SSB cathode microstructural regimes is established.
- Award ID(s):
- 2041499
- Publication Date:
- NSF-PAR ID:
- 10336716
- Journal Name:
- ACS Applied Materials & Interfaces
- ISSN:
- 1944-8244
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Solid-state-batteries (SSBs) present a promising technology for next-generation batteries due to their superior properties including increased energy density, wider electrochemical window and safer electrolyte design. Commercialization of SSBs, however, will depend on the resolution of a number of critical chemical and mechanical stability issues. The resolution of these issues will in turn depend heavily on our ability to accurately model these systems such that appropriate material selection, microstructure design, and operational parameters may be determined. In this article we review the current state-of-the art modeling tools with a focus on chemo-mechanics. Some of the key chemo-mechanical problems in SSBs involve dendrite growth through the solid-state electrolyte (SSE), interphase formation at the anode/SSE interface, and damage/decohesion of the various phases in the solid-state composite cathode. These mechanical processes in turn lead to capacity fade, impedance increase, and short-circuit of the battery, ultimately compromising safety and reliability. The article is divided into the three natural components of an all-solid-state architecture. First, modeling efforts pertaining to Li-metal anodes and dendrite initiation and growth mechanisms are reviewed, making the transition from traditional liquid electrolyte anodes to next generation all-solid-state anodes. Second, chemo-mechanics modeling of the SSE is reviewed with a particular focus on themore »
-
All-solid-state batteries (ASSBs) have garnered increasing attention due to the enhanced safety, featuring nonflammable solid electrolytes as well as the potential to achieve high energy density. 1 The advancement of the ASSBs is expected to provide, arguably, the most straightforward path towards practical, high-energy, and rechargeable batteries based on metallic anodes. 1 However, the sluggish ion transmission at the cathode-electrolyte (solid/solid) interface would result in the high resistant at the contact and limit the practical implementation of these all solid-state materials in real world batteries. 2 Several methods were suggested to enhance the kinetic condition of the ion migration between the cathode and the solid electrolyte (SE). 3 A composite strategy that mixes active materials and SEs for the cathode is a general way to decrease the ion transmission barrier at the cathode-electrolyte interface. 3 The active material concentration in the cathode is reduced as much as the SE portion increases by which the energy density of the ASSB is restricted. In addition, the mixing approach generally accompanies lattice mismatches between the cathode active materials and the SE, thus providing only limited improvements, which is imputed by random contacts between the cathode active materials and the SE during the mixingmore »
-
Metal-ion batteries (e.g., lithium and sodium ion batteries) are the promising power sources for portable electronics, electric vehicles, and smart grids. Recent metal-ion batteries with organic liquid electrolytes still suffer from safety issues regarding inflammability and insufficient lifetime.1 As the next generation energy storage devices, all-solid-state batteries (ASSBs) have promising potentials for the improved safety, higher energy density, and longer cycle life than conventional Li-ion batteries.2 The nonflammable solid electrolytes (SEs), where only Li ions are mobile, could prevent battery combustion and explosion since the side reactions that cause safety issues as well as degradation of the battery performance are largely suppressed. However, their practical application is hampered by the high resistance arising at the solid–solid electrode–electrolyte interface (including cathode-electrolyte interface and anode-electrolyte interface).3 Several methods have been introduced to optimize the contact capability as well as the electrochemical/chemical stability between the metal anodes (i.e.: Li and Na) and the SEs, which exhibited decent results in decreasing the charge transfer resistance and broadening the range of the stable energy window (i.e., lowing the chemical potential of metal anode below the highest occupied molecular orbital of the SEs).4 Nevertheless, mitigation for the cathode in ASSB is tardily developed because: (1) themore »
-
Conventional lithium-ion batteries are unable to meet the increasing demands for high-energy storage systems, because of their limited theoretical capacity. 1 In recent years, intensive attention has been paid to enhancing battery energy storage capability to satisfy the increasing energy demand in modern society and reduce the average energy capacity cost. Among the candidates for next generation high energy storage systems, the lithium sulfur battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1) and potential cost reduction. In addition, sulfur is a cost effective and environmentally friendly material due to its abundance and low-toxicity. 2 Despite all of these advantages, the practical application of lithium sulfur batteries to date has been hindered by a series of obstacles, including low active material loading, poor cycle life, and sluggish sulfur conversion kinetics. 3 Achieving high mass loading cathode in the traditional 2D planar thick electrode has been challenged. The high distorsion of the traditional planar thick electrodes for ion/electron transfer leads to the limited utilization of active materials and high resistance, which eventually results in restricted energy density and accelerated electrode failure. 4 Furthermore, of the electrolyte to pores in the cathode and utilization ratiomore »