skip to main content


Title: Highly Resolved Papilionoid Legume Phylogeny Based on Plastid Phylogenomics
Comprising 501 genera and around 14,000 species, Papilionoideae is not only the largest subfamily of Fabaceae (Leguminosae; legumes), but also one of the most extraordinarily diverse clades among angiosperms. Papilionoids are a major source of food and forage, are ecologically successful in all major biomes, and display dramatic variation in both floral architecture and plastid genome (plastome) structure. Plastid DNA-based phylogenetic analyses have greatly improved our understanding of relationships among the major groups of Papilionoideae, yet the backbone of the subfamily phylogeny remains unresolved. In this study, we sequenced and assembled 39 new plastomes that are covering key genera representing the morphological diversity in the subfamily. From 244 total taxa, we produced eight datasets for maximum likelihood (ML) analyses based on entire plastomes and/or concatenated sequences of 77 protein-coding sequences (CDS) and two datasets for multispecies coalescent (MSC) analyses based on individual gene trees. We additionally produced a combined nucleotide dataset comprising CDS plus matK gene sequences only, in which most papilionoid genera were sampled. A ML tree based on the entire plastome maximally supported all of the deep and most recent divergences of papilionoids (223 out of 236 nodes). The Swartzieae, ADA (Angylocalyceae, Dipterygeae, and Amburaneae), Cladrastis, Andira, and Exostyleae clades formed a grade to the remainder of the Papilionoideae, concordant with nine ML and two MSC trees. Phylogenetic relationships among the remaining five papilionoid lineages (Vataireoid, Dermatophyllum , Genistoid s.l., Dalbergioid s.l., and Baphieae + Non-Protein Amino Acid Accumulating or NPAAA clade) remained uncertain, because of insufficient support and/or conflicting relationships among trees. Our study fully resolved most of the deep nodes of Papilionoideae, however, some relationships require further exploration. More genome-scale data and rigorous analyses are needed to disentangle phylogenetic relationships among the five remaining lineages.  more » « less
Award ID(s):
1853024
NSF-PAR ID:
10336744
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Plant Science
Volume:
13
ISSN:
1664-462X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Plastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants. However, recent studies have shown that some lineages present unusual variations in some of these features. Members of the cactus family are one of these lineages, with distinct plastome structures reported across disparate lineages, including gene losses, inversions, boundary movements or loss of the canonical inverted repeat (IR) region. However, only a small fraction of cactus diversity has been analysed so far.

    Methods

    Here, we investigated plastome features of the tribe Opuntieae, the remarkable prickly pear cacti, which represent one of the most diverse and important lineages of Cactaceae. We assembled de novo the plastome of 43 species, representing a comprehensive sampling of the tribe, including all seven genera, and analysed their evolution in a phylogenetic comparative framework. Phylogenomic analyses with different datasets (full plastome sequences and genes only) were performed, followed by congruence analyses to assess signals underlying contentious nodes.

    Key Results

    Plastomes varied considerably in length, from 121 to 162 kbp, with striking differences in the content and size of the IR region (contraction and expansion events), including a lack of the canonical IR in some lineages and the pseudogenization or loss of some genes. Overall, nine different types of plastomes were reported, deviating in the presence of the IR region or the genes contained in the IR. Overall, plastome sequences resolved phylogenetic relationships within major clades of Opuntieae with high bootstrap values but presented some contentious nodes depending on the dataset analysed (e.g. whole plastome vs. genes only). Congruence analyses revealed that most plastidial regions lack phylogenetic resolution, while few markers are supporting the most likely topology. Likewise, alternative topologies are driven by a handful of plastome markers, suggesting recalcitrant nodes in the phylogeny.

    Conclusions

    Our study reveals a dynamic nature of plastome evolution across closely related lineages, shedding light on peculiar features of plastomes. Variation of plastome types across Opuntieae is remarkable in size, structure and content and can be important for the recognition of species in some major clades. Unravelling connections between the causes of plastome variation and the consequences for species biology, physiology, ecology, diversification and adaptation is a promising and ambitious endeavour in cactus research. Although plastome data resolved major phylogenetic relationships, the generation of nuclear genomic data is necessary to confront these hypotheses and assess the recalcitrant nodes further.

     
    more » « less
  2. Summary

    The plastid genome (plastome), while surprisingly constant in gene order and content across most photosynthetic angiosperms, exhibits variability in several unrelated lineages. During the diversification history of the legume family Fabaceae, plastomes have undergone many rearrangements, including inversions, expansion, contraction and loss of the typical inverted repeat (IR), gene loss and repeat accumulation in both shared and independent events. While legume plastomes have been the subject of study for some time, most work has focused on agricultural species in the IR‐lacking clade (IRLC) and the plant modelMedicago truncatula. The subfamily Papilionoideae, which contains virtually all of the agricultural legume species, also comprises most of the plastome variation detected thus far in the family. In this study three non‐papilioniods were included among 34 newly sequenced legume plastomes, along with 33 publicly available sequences, to assess plastome structural evolution in the subfamily. In an effort to examine plastome variation across the subfamily, approximately 20% of the sampling represents the IRLC with the remainder selected to represent the early‐branching papilionoid clades. A number of IR‐related and repeat‐mediated changes were identified and examined in a phylogenetic context. Recombination between direct repeats associated withycf2resulted in intraindividual plastome heteroplasmy. Although loss of the IR has not been reported in legumes outside of the IRLC, one genistoid taxon was found to completely lack the typical plastome IR. The role of the IR and non‐IR repeats in the progression of plastome change is discussed.

     
    more » « less
  3. Premise

    Comprising five families that vastly differ in species richness—ranging from Gelsemiaceae with 13 species to the Rubiaceae with 13,775 species—members of the Gentianales are often among the most species‐rich and abundant plants in tropical forests. Despite considerable phylogenetic work within particular families and genera, several alternative topologies for family‐level relationships within Gentianales have been presented in previous studies.

    Methods

    Here we present a phylogenomic analysis based on nuclear genes targeted by the Angiosperms353 probe set for approximately 150 species, representing all families and approximately 85% of the formally recognized tribes. We were able to retrieve partial plastomes from off‐target reads for most taxa and infer phylogenetic trees for comparison with the nuclear‐derived trees.

    Results

    We recovered high support for over 80% of all nodes. The plastid and nuclear data are largely in agreement, except for some weakly to moderately supported relationships. We discuss the implications of our results for the order’s classification, highlighting points of increased support for previously uncertain relationships. Rubiaceae is sister to a clade comprising (Gentianaceae + Gelsemiaceae) + (Apocynaceae + Loganiaceae).

    Conclusions

    The higher‐level phylogenetic relationships within Gentianales are confidently resolved. In contrast to recent studies, our results support the division of Rubiaceae into two subfamilies: Cinchonoideae and Rubioideae. We do not formally recognize Coptosapelteae and Luculieae within any particular subfamily but treat them as incertae sedis. Our framework paves the way for further work on the phylogenetics, biogeography, morphological evolution, and macroecology of this important group of flowering plants.

     
    more » « less
  4. Abstract

    A phylogenomic analysis of the so far phylogenetically unresolved subfamily Bromelioideae (Bromeliaceae) was performed to infer species relationships as the basis for future taxonomic treatment, stabilization of generic concept, and further analyses of evolution and biogeography of the subfamily. A target‐enrichment approach was chosen, using the Angiosperms353 v.4 kit RNA‐baits and including 86 Bromelioideae species representing previously identified major evolutionary lineages. Phylogenetic analyses were based on 125 target nuclear loci, assembled off‐target plastome as well as mitogenome reads. A Bromelioideae phylogeny with a mostly well‐resolved backbone is provided based on nuclear (194 kbp), plastome (109 kbp), and mitogenome data (34 kbp). For the nuclear markers, a coalescent‐based analysis of single‐locus gene trees was performed as well as a supermatrix analysis of concatenated gene alignments. Nuclear and plastome datasets provide well‐resolved trees, which showed only minor topological incongruences. The mitogenome tree is not sufficiently resolved. A total of 26 well‐supported clades were identified. The generaAechmea,Canistrum,Hohenbergia,Neoregelia, andQuesneliawere revealed polyphyletic. In core Bromelioideae,Acanthostachysis sister to the remainder. Among the 26 recognized clades, 12 correspond with currently employed taxonomic concepts. Hence, the presented phylogenetic framework will serve as an important basis for future taxonomic revisions as well as to better understand the evolutionary drivers and processes in this exciting subfamily.

     
    more » « less
  5. Background

    In the past three decades, several studies have predominantly relied on a small sample of the plastome to infer deep phylogenetic relationships in the species-rich Melastomataceae. Here, we report the first full plastid sequences of this family, compare general features of the sampled plastomes to other sequenced Myrtales, and survey the plastomes for highly informative regions for phylogenetics.

    Methods

    Genome skimming was performed for 16 species spread across the Melastomataceae. Plastomes were assembled, annotated and compared to eight sequenced plastids in the Myrtales. Phylogenetic inference was performed using Maximum Likelihood on six different data sets, where putative biases were taken into account. Summary statistics were generated for all introns and intergenic spacers with suitable size for polymerase chain reaction (PCR) amplification and used to rank the markers by phylogenetic information.

    Results

    The majority of the plastomes sampled are conserved in gene content and order, as well as in sequence length and GC content within plastid regions and sequence classes. Departures include the putative presence ofrps16andrpl2pseudogenes in some plastomes. Phylogenetic analyses of the majority of the schemes analyzed resulted in the same topology with high values of bootstrap support. Although there is still uncertainty in some relationships, in the highest supported topologies only two nodes received bootstrap values lower than 95%.

    Discussion

    Melastomataceae plastomes are no exception for the general patterns observed in the genomic structure of land plant chloroplasts, being highly conserved and structurally similar to most other Myrtales. Despite the fact that the full plastome phylogeny shares most of the clades with the previously widely used and reduced data set, some changes are still observed and bootstrap support is higher. The plastome data set presented here is a step towards phylogenomic analyses in the Melastomataceae and will be a useful resource for future studies.

     
    more » « less