skip to main content

Title: Highly accurate operator factorization methods for the integral fractional Laplacian and its generalization

In this paper, we propose a new class of operator factorization methods to discretize the integral fractional Laplacian \begin{document}$ (- \Delta)^\frac{{ \alpha}}{{2}} $\end{document} for \begin{document}$ \alpha \in (0, 2) $\end{document}. One main advantage is that our method can easily increase numerical accuracy by using high-degree Lagrange basis functions, but remain its scheme structure and computer implementation unchanged. Moreover, it results in a symmetric (multilevel) Toeplitz differentiation matrix, enabling efficient computation via the fast Fourier transforms. If constant or linear basis functions are used, our method has an accuracy of \begin{document}$ {\mathcal O}(h^2) $\end{document}, while \begin{document}$ {\mathcal O}(h^4) $\end{document} for quadratic basis functions with \begin{document}$ h $\end{document} a small mesh size. This accuracy can be achieved for any \begin{document}$ \alpha \in (0, 2) $\end{document} and can be further increased if higher-degree basis functions are chosen. Numerical experiments are provided to approximate the fractional Laplacian and solve the fractional Poisson problems. It shows that if the solution of fractional Poisson problem satisfies \begin{document}$ u \in C^{m, l}(\bar{ \Omega}) $\end{document} for \begin{document}$ m \in {\mathbb N} $\end{document} and \begin{document}$ 0 < l < 1 $\end{document}, our method has an accuracy of \begin{document}$ more » {\mathcal O}(h^{\min\{m+l, \, 2\}}) $\end{document} for constant and linear basis functions, while \begin{document}$ {\mathcal O}(h^{\min\{m+l, \, 4\}}) $\end{document} for quadratic basis functions. Additionally, our method can be readily applied to approximate the generalized fractional Laplacians with symmetric kernel function, and numerical study on the tempered fractional Poisson problem demonstrates its efficiency.

« less
Authors:
;
Award ID(s):
1953177 1913293
Publication Date:
NSF-PAR ID:
10336766
Journal Name:
Discrete & Continuous Dynamical Systems - S
Volume:
15
Issue:
4
Page Range or eLocation-ID:
851
ISSN:
1937-1632
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the asymptotics of the Poisson kernel and Green's functions of the fractional conformal Laplacian for conformal infinities of asymptotically hyperbolic manifolds. We derive sharp expansions of the Poisson kernel and Green's functions of the conformal Laplacian near their singularities. Our expansions of the Green's functions answer the first part of the conjecture of Kim-Musso-Wei[21] in the case of locally flat conformal infinities of Poincare-Einstein manifolds and together with the Poisson kernel asymptotic is used also in our paper [25] to show solvability of the fractional Yamabe problem in that case. Our asymptotics of the Green's functions on the general case of conformal infinities of asymptotically hyperbolic space is used also in [29] to show solvability of the fractional Yamabe problem for conformal infinities of dimension \begin{document}$ 3 $\end{document} and fractional parameter in \begin{document}$ (\frac{1}{2}, 1) $\end{document} corresponding to a global case left by previous works.

  2. This paper introduces a novel generative encoder (GE) framework for generative imaging and image processing tasks like image reconstruction, compression, denoising, inpainting, deblurring, and super-resolution. GE unifies the generative capacity of GANs and the stability of AEs in an optimization framework instead of stacking GANs and AEs into a single network or combining their loss functions as in existing literature. GE provides a novel approach to visualizing relationships between latent spaces and the data space. The GE framework is made up of a pre-training phase and a solving phase. In the former, a GAN with generator \begin{document}$ G $\end{document} capturing the data distribution of a given image set, and an AE network with encoder \begin{document}$ E $\end{document} that compresses images following the estimated distribution by \begin{document}$ G $\end{document} are trained separately, resulting in two latent representations of the data, denoted as the generative and encoding latent space respectively. In the solving phase, given noisy image \begin{document}$ x = \mathcal{P}(x^*) $\end{document}, where \begin{document}$ x^* $\end{document} is the target unknown image, \begin{document}$ \mathcal{P} $\end{document} is an operator adding an addictive, or multiplicative, or convolutional noise, or equivalently given such an image \begin{document}$ x $\end{document}more »in the compressed domain, i.e., given \begin{document}$ m = E(x) $\end{document}, the two latent spaces are unified via solving the optimization problem

    and the image \begin{document}$ x^* $\end{document} is recovered in a generative way via \begin{document}$ \hat{x}: = G(z^*)\approx x^* $\end{document}, where \begin{document}$ \lambda>0 $\end{document} is a hyperparameter. The unification of the two spaces allows improved performance against corresponding GAN and AE networks while visualizing interesting properties in each latent space.

    « less
  3. Consider the linear transport equation in 1D under an external confining potential \begin{document}$ \Phi $\end{document}:

    For \begin{document}$ \Phi = \frac {x^2}2 + \frac { \varepsilon x^4}2 $\end{document} (with \begin{document}$ \varepsilon >0 $\end{document} small), we prove phase mixing and quantitative decay estimates for \begin{document}$ {\partial}_t \varphi : = - \Delta^{-1} \int_{ \mathbb{R}} {\partial}_t f \, \mathrm{d} v $\end{document}, with an inverse polynomial decay rate \begin{document}$ O({\langle} t{\rangle}^{-2}) $\end{document}. In the proof, we develop a commuting vector field approach, suitably adapted to this setting. We will explain why we hope this is relevant for the nonlinear stability of the zero solution for the Vlasov–Poisson system in \begin{document}$ 1 $\end{document}D under the external potential \begin{document}$ \Phi $\end{document}.

  4. We establish an instantaneous smoothing property for decaying solutions on the half-line \begin{document}$ (0, +\infty) $\end{document} of certain degenerate Hilbert space-valued evolution equations arising in kinetic theory, including in particular the steady Boltzmann equation. Our results answer the two main open problems posed by Pogan and Zumbrun in their treatment of \begin{document}$ H^1 $\end{document} stable manifolds of such equations, showing that \begin{document}$ L^2_{loc} $\end{document} solutions that remain sufficiently small in \begin{document}$ L^\infty $\end{document} (i) decay exponentially, and (ii) are \begin{document}$ C^\infty $\end{document} for \begin{document}$ t>0 $\end{document}, hence lie eventually in the \begin{document}$ H^1 $\end{document} stable manifold constructed by Pogan and Zumbrun.

  5. We consider the well-known Lieb-Liniger (LL) model for \begin{document}$ N $\end{document} bosons interacting pairwise on the line via the \begin{document}$ \delta $\end{document} potential in the mean-field scaling regime. Assuming suitable asymptotic factorization of the initial wave functions and convergence of the microscopic energy per particle, we show that the time-dependent reduced density matrices of the system converge in trace norm to the pure states given by the solution to the one-dimensional cubic nonlinear Schrödinger equation (NLS) with an explict rate of convergence. In contrast to previous work [3] relying on the formalism of second quantization and coherent states and without an explicit rate, our proof is based on the counting method of Pickl [65,66,67] and Knowles and Pickl [44]. To overcome difficulties stemming from the singularity of the \begin{document}$ \delta $\end{document} potential, we introduce a new short-range approximation argument that exploits the Hölder continuity of the \begin{document}$ N $\end{document}-body wave function in a single particle variable. By further exploiting the \begin{document}$ L^2 $\end{document}-subcritical well-posedness theory for the 1D cubic NLS, we can prove mean-field convergence when the limiting solution to the NLS has finitemore »mass, but only for a very special class of \begin{document}$ N $\end{document}-body initial states.

    « less