We consider the wellknown LiebLiniger (LL) model for
We study the asymptotics of the Poisson kernel and Green's functions of the fractional conformal Laplacian for conformal infinities of asymptotically hyperbolic manifolds. We derive sharp expansions of the Poisson kernel and Green's functions of the conformal Laplacian near their singularities. Our expansions of the Green's functions answer the first part of the conjecture of KimMussoWei[
 Award ID(s):
 2000164
 Publication Date:
 NSFPAR ID:
 10343879
 Journal Name:
 Discrete and Continuous Dynamical Systems
 Volume:
 0
 Issue:
 0
 Page Range or eLocationID:
 0
 ISSN:
 10780947
 Sponsoring Org:
 National Science Foundation
More Like this

bosons interacting pairwise on the line via the\begin{document}$ N $\end{document} potential in the meanfield scaling regime. Assuming suitable asymptotic factorization of the initial wave functions and convergence of the microscopic energy per particle, we show that the timedependent reduced density matrices of the system converge in trace norm to the pure states given by the solution to the onedimensional cubic nonlinear Schrödinger equation (NLS) with an explict rate of convergence. In contrast to previous work [\begin{document}$ \delta $\end{document} 3 ] relying on the formalism of second quantization and coherent states and without an explicit rate, our proof is based on the counting method of Pickl [65 ,66 ,67 ] and Knowles and Pickl [44 ]. To overcome difficulties stemming from the singularity of the potential, we introduce a new shortrange approximation argument that exploits the Hölder continuity of the\begin{document}$ \delta $\end{document} body wave function in a single particle variable. By further exploiting the\begin{document}$ N $\end{document} subcritical wellposedness theory for the 1D cubic NLS, we can prove meanfield convergence when the limiting solution to the NLS has finitemore »\begin{document}$ L^2 $\end{document} 
In this paper we consider the inverse problem of determining structural properties of a thin anisotropic and dissipative inhomogeneity in
,\begin{document}$ {\mathbb R}^m $\end{document} from scattering data. In the asymptotic limit as the thickness goes to zero, the thin inhomogeneity is modeled by an open\begin{document}$ m = 2, 3 $\end{document} dimensional manifold (here referred to as screen), and the field inside is replaced by jump conditions on the total field involving a second order surface differential operator. We show that all the surface coefficients (possibly matrix valued and complex) are uniquely determined from far field patterns of the scattered fields due to infinitely many incident plane waves at a fixed frequency. Then we introduce a target signature characterized by a novel eigenvalue problem such that the eigenvalues can be determined from measured scattering data, adapting the approach in [\begin{document}$ m1 $\end{document} 20 ]. Changes in the measured eigenvalues are used to identified changes in the coefficients without making use of the governing equations that model the healthy screen. In our investigation the shape of the screen is known, since it represents the object being evaluated. We present some preliminary numerical results indicating the validitymore » 
We establish existence of finite energy weak solutions to the kinetic FokkerPlanck equation and the linear Landau equation near Maxwellian, in the presence of specular reflection boundary condition for general domains. Moreover, by using a method of reflection and the
estimate of [\begin{document}$ S_p $\end{document} 7 ], we prove regularity in the kinetic Sobolev spaces and anisotropic Hölder spaces for such weak solutions. Such\begin{document}$ S_p $\end{document} regularity leads to the uniqueness of weak solutions.\begin{document}$ S_p $\end{document} 
Experiments with diblock copolymer melts display undulated bilayers that emanate from defects such as triple junctions and endcaps, [
8 ]. Undulated bilayers are characterized by oscillatory perturbations of the bilayer width, which decay on a spatial length scale that is long compared to the bilayer width. We mimic defects within the functionalized CahnHillard free energy by introducing spatially localized inhomogeneities within its parameters. For length parameter , we show that this induces undulated bilayer solutions whose width perturbations decay on an\begin{document}$ \varepsilon\ll1 $\end{document} inner length scale that is long in comparison to the\begin{document}$ O\!\left( \varepsilon^{1/2}\right) $\end{document} scale that characterizes the bilayer width.\begin{document}$ O(1) $\end{document} 
In this paper, we propose a new class of operator factorization methods to discretize the integral fractional Laplacian
for\begin{document}$ ( \Delta)^\frac{{ \alpha}}{{2}} $\end{document} . One main advantage is that our method can easily increase numerical accuracy by using highdegree Lagrange basis functions, but remain its scheme structure and computer implementation unchanged. Moreover, it results in a symmetric (multilevel) Toeplitz differentiation matrix, enabling efficient computation via the fast Fourier transforms. If constant or linear basis functions are used, our method has an accuracy of\begin{document}$ \alpha \in (0, 2) $\end{document} , while\begin{document}$ {\mathcal O}(h^2) $\end{document} for quadratic basis functions with\begin{document}$ {\mathcal O}(h^4) $\end{document} a small mesh size. This accuracy can be achieved for any\begin{document}$ h $\end{document} and can be further increased if higherdegree basis functions are chosen. Numerical experiments are provided to approximate the fractional Laplacian and solve the fractional Poisson problems. It shows that if the solution of fractional Poisson problem satisfies\begin{document}$ \alpha \in (0, 2) $\end{document} for\begin{document}$ u \in C^{m, l}(\bar{ \Omega}) $\end{document} and\begin{document}$ m \in {\mathbb N} $\end{document} , our method has an accuracy of\begin{document}$ 0 < l < 1 $\end{document} for constant and linear basis functions, while\begin{document}$more » for quadratic basis functions. Additionally, our method can be readily applied to approximate the generalized fractional Laplacians with symmetric kernel function, and numerical study on the tempered fractional Poisson problem demonstrates its efficiency.\begin{document}$ {\mathcal O}(h^{\min\{m+l, \, 4\}}) $\end{document}