skip to main content

Title: The Effects of Stellar Population and Gas Covering Fraction on the Emergent Lyα Emission of High-redshift Galaxies*
Abstract We perform joint modeling of the composite rest-frame far-UV and optical spectra of redshift 1.85 ≤ z ≤ 3.49 star-forming galaxies to deduce key properties of the massive stars, ionized interstellar medium (ISM), and neutral ISM, with the aim of investigating the principal factors affecting the production and escape of Ly α photons. Our sample consists of 136 galaxies with deep Keck/LRIS and MOSFIRE spectra covering, respectively, Ly β through C iii ] λλ 1907, 1909 and [O ii ], [Ne iii ], H β , [O iii ], H α , [N ii ], and [S ii ]. Spectral and photoionization modeling indicates that the galaxies are uniformly consistent with stellar population synthesis models that include the effects of stellar binarity. Over the dynamic range of our sample, there is little variation in stellar and nebular abundance with Ly α equivalent width, W λ (Ly α ), and only a marginal anticorrelation between age and W λ (Ly α ). The inferred range of ionizing spectral shapes is insufficient to solely account for the variation in W λ (Ly α ); rather, the covering fraction of optically thick H i appears to be the principal factor modulating the more » escape of Ly α , with most of the Ly α photons in down-the-barrel observations of galaxies escaping through low column density or ionized channels in the ISM. Our analysis shows that a high star-formation-rate surface density, Σ SFR , particularly when coupled with a low galaxy potential (i.e., low stellar mass), can aid in reducing the covering fraction and ease the escape of Ly α photons. We conclude with a discussion of the implications of our results for the escape of ionizing radiation at high redshift. « less
; ; ; ; ; ; ; ; ;
Award ID(s):
2009313 2009278 2009085
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this

    The ionizing photon escape fraction [Lyman continuum (LyC) fesc] of star-forming galaxies is the single greatest unknown in the reionization budget. Stochastic sightline effects prohibit the direct separation of LyC leakers from non-leakers at significant redshifts. Here we circumvent this uncertainty by inferring fesc using resolved (R > 4000) Lyman α (Lyα) profiles from the X-SHOOTER Lyα survey at z = 2 (XLS-z2). With empirically motivated criteria, we use Lyα profiles to select leakers ($f_{\mathrm{ esc}} > 20{{\ \rm per\ cent}}$) and non-leakers ($f_{\mathrm{ esc}} < 5{{\ \rm per\ cent}}$) from a representative sample of >0.2L* Lyman α emitters (LAEs). We use median stacked spectra of these subsets over λrest ≈ 1000–8000 Å to investigate the conditions for LyC fesc. Our stacks show similar mass, metallicity, MUV, and βUV. We find the following differences between leakers versus non-leakers: (i) strong nebular C iv and He ii emission versus non-detections; (ii) [O iii]/[O ii] ≈ 8.5 versus ≈3; (iii) Hα/Hβ indicating no dust versus E(B − V) ≈ 0.3; (iv) Mg ii emission close to the systemic velocity versus redshifted, optically thick Mg ii; and (v) Lyα fesc of ${\approx} 50{{\ \rm per\ cent}}$ versus ${\approx} 10{{\ \rm per\ cent}}$. The extreme equivalent widths (EWs) in leakers ([O iii]+$\mathrm{ H}\beta \approx 1100$ Å rest frame)more »constrain the characteristic time-scale of LyC escape to ≈3–10 Myr bursts when short-lived stars with the hardest ionizing spectra shine. The defining traits of leakers – extremely ionizing stellar populations, low column densities, a dust-free, high-ionization state interstellar medium (ISM) – occur simultaneously in the $f_{\rm esc} > 20{{\ \rm per\ cent}}$ stack, suggesting they are causally connected, and motivating why indicators like [O iii]/[O ii] may suffice to constrain fesc at z > 6 with the James Webb Space Telescope (JWST). The leakers comprise half of our sample, have a median LyC$f_{\rm esc} \approx 50{{\ \rm per\ cent}}$ (conservative range: $20\!-\!55{{\ \rm per\ cent}}$), and an ionizing production efficiency $\log ({\xi _{\rm {ion}}/\rm {Hz\ erg^{-1}}})\approx 25.9$ (conservative range: 25.7–25.9). These results show LAEs – the type of galaxies rare at z ≈ 2, but that become the norm at higher redshift – are highly efficient ionizers, with extreme ξion and prolific fesc occurring in sync.

    « less
  2. Abstract We present spatially resolved Hubble Space Telescope grism spectroscopy of 15 galaxies at z ∼ 0.8 drawn from the DEEP2 survey. We analyze H α +[N ii ], [S ii ], and [S iii ] emission on kiloparsec scales to explore which mechanisms are powering emission lines at high redshifts, testing which processes may be responsible for the well-known offset of high-redshift galaxies from the z ∼ 0 locus in the [O iii ]/H β versus [N ii ]/H α Baldwin—Phillips—Terlevich (BPT) excitation diagram. We study spatially resolved emission-line maps to examine evidence for active galactic nuclei (AGN), shocks, diffuse ionized gas (DIG), or escaping ionizing radiation, all of which may contribute to the BPT offsets observed in our sample. We do not find significant evidence of AGN in our sample and quantify that, on average, AGN would need to contribute ∼25% of the H α flux in the central resolution element in order to cause the observed BPT offsets. We find weak (2 σ ) evidence of DIG emission at low surface brightnesses, yielding an implied total DIG emission fraction of ∼20%, which is not significant enough to be the dominant emission line driver in our sample. Inmore »general we find that the observed emission is dominated by star-forming H ii regions. We discuss trends with demographic properties and the possible role of α -enhanced abundance patterns in the emission spectra of high-redshift galaxies. Our results indicate that photoionization modeling with stellar population synthesis inputs is a valid tool to explore the specific star formation properties which may cause BPT offsets, to be explored in future work.« less
  3. ABSTRACT We present an updated model of the cosmic ionizing background from the UV to the X-rays. Relative to our previous model, the new model provides a better match to a large number of up-to-date empirical constraints, including: (1) new galaxy and AGN luminosity functions; (2) stellar spectra including binary stars; (3) obscured and unobscured AGN; (4) a measurement of the non-ionizing UV background; (5) measurements of the intergalactic H i and He ii photoionization rates at z ∼ 0−6; (6) the local X-ray background; and (7) improved measurements of the intergalactic opacity. In this model, AGN dominate the H i ionizing background at z ≲ 3 and star-forming galaxies dominate it at higher redshifts. Combined with the steeply declining AGN luminosity function beyond z ∼ 2, the slow evolution of the H i ionization rate inferred from the high-redshift H i Ly α forest requires an escape fraction from star-forming galaxies that increases with redshift (a population-averaged escape fraction of $\approx 1{{\ \rm per\ cent}}$ suffices to ionize the intergalactic medium at z = 3 when including the contribution from AGN). We provide effective photoionization and photoheating rates calibrated to match the Planck 2018 reionization optical depth and recent constraints from the He ii Ly α forestmore »in hydrodynamic simulations.« less
  4. Context. The Lyman- α line in the ultraviolet (UV) and the [CII] line in the far-infrared (FIR) are widely used tools to identify galaxies in the early Universe and to obtain insights into interstellar medium (ISM) properties in high-redshift galaxies. By combining data obtained with ALMA in band 7 at ∼320 GHz as part of the ALMA Large Program to INvestigate [CII] at Early Times (ALPINE) with spectroscopic data from DEIMOS at the Keck Observatory, VIMOS and FORS2 at the Very Large Telescope, we assembled a unique sample of 53 main-sequence star-forming galaxies at 4.4 <   z  <  6 in which we detect both the Lyman- α line in the UV and the [CII] line in the FIR. Aims. The goal of this paper is to constrain the properties of the Ly α emission in these galaxies in relation to other properties of the ISM. Methods. We used [CII], observed with ALMA, as a tracer of the systemic velocity of the galaxies, and we exploited the available optical spectroscopy to obtain the Ly α -[CII] and ISM-[CII] velocity offsets. Results. We find that 90% of the selected objects have Ly α -[CII] velocity offsets in the range 0 <  Δ vmore »Ly α  − [CII]  <  400 km s −1 , in line with the few measurements available so far in the early Universe, and significantly smaller than those observed at lower redshifts. At the same time, we observe ISM-[CII] offsets in the range −500 <  Δ v ISM−[CII]  <  0 km s −1 , in line with values at all redshifts, which we interpret as evidence for outflows in these galaxies. We find significant anticorrelations between Δ v Ly α −[CII] and the Ly α rest-frame equivalent width EW 0 (Ly α ) (or equivalently, the Ly α escape fraction f esc (Ly α )): galaxies that show smaller Δ v Ly α −[CII] have larger EW 0 (Ly α ) and f esc (Ly α ). Conclusions. We interpret these results in the framework of available models for the radiative transfer of Ly α photons. According to the models, the escape of Ly α photons would be favored in galaxies with high outflow velocities, producing large EW 0 (Ly α ) and small Δ v Ly α -[CII] , in agreement with our observations. The uniform shell model would also predict that the Ly α escape in galaxies with slow outflows (0 <   v out  <  300 km s −1 ) is mainly determined by the neutral hydrogen column density (NHI) along the line of sight, while the alternative model by Steidel et al. (2010, ApJ, 717, 289) would more highly favor a combination of NHI at the systemic velocity and covering fraction as driver of the Ly α escape. We suggest that the increase in Ly α escape that is observed in the literature between z  ∼ 2 and z  ∼ 6 is not due to a higher incidence of fast outflows at high redshift, but rather to a decrease in average NHI along the line of sight, or alternatively, a decrease in HI covering fraction.« less

    We present new observations of 16 bright (r = 19–21) gravitationally lensed galaxies at z ≃ 1–3 selected from the CASSOWARY survey. Included in our sample is the z = 1.42 galaxy CSWA-141, one of the brightest known reionization-era analogues at high redshift (g = 20.5), with a large specific star formation rate (31.2 Gyr−1) and an [O iii]+H β equivalent width (EW[O iii] + H β = 730 Å) that is nearly identical to the average value expected at z ≃ 7–8. In this paper, we investigate the rest-frame UV nebular line emission in our sample with the goal of understanding the factors that regulate strong C iii] emission. Although most of the sources in our sample show weak UV line emission, we find elevated C iii] in the spectrum of CSWA-141 (EWC iii] = 4.6 ± 1.9 Å) together with detections of other prominent emission lines (O iii], Si iii], Fe ii⋆, Mg ii). We compare the rest-optical line properties of high-redshift galaxies with strong and weak C iii] emission, and find that systems with the strongest UV line emission tend to have young stellar populations and nebular gas that is moderately metal-poor and highly ionized, consistent with trends seen at low and high redshift. The brightness of CSWA-141 enables detailed investigationmore »of the extreme emission line galaxies which become common at z > 6. We find that gas traced by the C iii] doublet likely probes higher densities than that traced by [O ii] and [S ii]. Characterization of the spectrally resolved Mg ii emission line and several low-ionization absorption lines suggests neutral gas around the young stars is likely optically thin, potentially facilitating the escape of ionizing radiation.

    « less