skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: The Effects of Stellar Population and Gas Covering Fraction on the Emergent Lyα Emission of High-redshift Galaxies*
Abstract We perform joint modeling of the composite rest-frame far-UV and optical spectra of redshift 1.85 ≤ z ≤ 3.49 star-forming galaxies to deduce key properties of the massive stars, ionized interstellar medium (ISM), and neutral ISM, with the aim of investigating the principal factors affecting the production and escape of Ly α photons. Our sample consists of 136 galaxies with deep Keck/LRIS and MOSFIRE spectra covering, respectively, Ly β through C iii ] λλ 1907, 1909 and [O ii ], [Ne iii ], H β , [O iii ], H α , [N ii ], and [S ii ]. Spectral and photoionization modeling indicates that the galaxies are uniformly consistent with stellar population synthesis models that include the effects of stellar binarity. Over the dynamic range of our sample, there is little variation in stellar and nebular abundance with Ly α equivalent width, W λ (Ly α ), and only a marginal anticorrelation between age and W λ (Ly α ). The inferred range of ionizing spectral shapes is insufficient to solely account for the variation in W λ (Ly α ); rather, the covering fraction of optically thick H i appears to be the principal factor modulating the escape of Ly α , with most of the Ly α photons in down-the-barrel observations of galaxies escaping through low column density or ionized channels in the ISM. Our analysis shows that a high star-formation-rate surface density, Σ SFR , particularly when coupled with a low galaxy potential (i.e., low stellar mass), can aid in reducing the covering fraction and ease the escape of Ly α photons. We conclude with a discussion of the implications of our results for the escape of ionizing radiation at high redshift.  more » « less
Award ID(s):
2009313 2009278 2009085
PAR ID:
10336789
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
926
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
31
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present an updated model of the cosmic ionizing background from the UV to the X-rays. Relative to our previous model, the new model provides a better match to a large number of up-to-date empirical constraints, including: (1) new galaxy and AGN luminosity functions; (2) stellar spectra including binary stars; (3) obscured and unobscured AGN; (4) a measurement of the non-ionizing UV background; (5) measurements of the intergalactic H i and He ii photoionization rates at z ∼ 0−6; (6) the local X-ray background; and (7) improved measurements of the intergalactic opacity. In this model, AGN dominate the H i ionizing background at z ≲ 3 and star-forming galaxies dominate it at higher redshifts. Combined with the steeply declining AGN luminosity function beyond z ∼ 2, the slow evolution of the H i ionization rate inferred from the high-redshift H i Ly α forest requires an escape fraction from star-forming galaxies that increases with redshift (a population-averaged escape fraction of $$\approx 1{{\ \rm per\ cent}}$$ suffices to ionize the intergalactic medium at z = 3 when including the contribution from AGN). We provide effective photoionization and photoheating rates calibrated to match the Planck 2018 reionization optical depth and recent constraints from the He ii Ly α forest in hydrodynamic simulations. 
    more » « less
  2. Context. The Lyman- α line in the ultraviolet (UV) and the [CII] line in the far-infrared (FIR) are widely used tools to identify galaxies in the early Universe and to obtain insights into interstellar medium (ISM) properties in high-redshift galaxies. By combining data obtained with ALMA in band 7 at ∼320 GHz as part of the ALMA Large Program to INvestigate [CII] at Early Times (ALPINE) with spectroscopic data from DEIMOS at the Keck Observatory, VIMOS and FORS2 at the Very Large Telescope, we assembled a unique sample of 53 main-sequence star-forming galaxies at 4.4 <   z  <  6 in which we detect both the Lyman- α line in the UV and the [CII] line in the FIR. Aims. The goal of this paper is to constrain the properties of the Ly α emission in these galaxies in relation to other properties of the ISM. Methods. We used [CII], observed with ALMA, as a tracer of the systemic velocity of the galaxies, and we exploited the available optical spectroscopy to obtain the Ly α -[CII] and ISM-[CII] velocity offsets. Results. We find that 90% of the selected objects have Ly α -[CII] velocity offsets in the range 0 <  Δ v Ly α  − [CII]  <  400 km s −1 , in line with the few measurements available so far in the early Universe, and significantly smaller than those observed at lower redshifts. At the same time, we observe ISM-[CII] offsets in the range −500 <  Δ v ISM−[CII]  <  0 km s −1 , in line with values at all redshifts, which we interpret as evidence for outflows in these galaxies. We find significant anticorrelations between Δ v Ly α −[CII] and the Ly α rest-frame equivalent width EW 0 (Ly α ) (or equivalently, the Ly α escape fraction f esc (Ly α )): galaxies that show smaller Δ v Ly α −[CII] have larger EW 0 (Ly α ) and f esc (Ly α ). Conclusions. We interpret these results in the framework of available models for the radiative transfer of Ly α photons. According to the models, the escape of Ly α photons would be favored in galaxies with high outflow velocities, producing large EW 0 (Ly α ) and small Δ v Ly α -[CII] , in agreement with our observations. The uniform shell model would also predict that the Ly α escape in galaxies with slow outflows (0 <   v out  <  300 km s −1 ) is mainly determined by the neutral hydrogen column density (NHI) along the line of sight, while the alternative model by Steidel et al. (2010, ApJ, 717, 289) would more highly favor a combination of NHI at the systemic velocity and covering fraction as driver of the Ly α escape. We suggest that the increase in Ly α escape that is observed in the literature between z  ∼ 2 and z  ∼ 6 is not due to a higher incidence of fast outflows at high redshift, but rather to a decrease in average NHI along the line of sight, or alternatively, a decrease in HI covering fraction. 
    more » « less
  3. Abstract We present spatially resolved Hubble Space Telescope grism spectroscopy of 15 galaxies at z ∼ 0.8 drawn from the DEEP2 survey. We analyze H α +[N ii ], [S ii ], and [S iii ] emission on kiloparsec scales to explore which mechanisms are powering emission lines at high redshifts, testing which processes may be responsible for the well-known offset of high-redshift galaxies from the z ∼ 0 locus in the [O iii ]/H β versus [N ii ]/H α Baldwin—Phillips—Terlevich (BPT) excitation diagram. We study spatially resolved emission-line maps to examine evidence for active galactic nuclei (AGN), shocks, diffuse ionized gas (DIG), or escaping ionizing radiation, all of which may contribute to the BPT offsets observed in our sample. We do not find significant evidence of AGN in our sample and quantify that, on average, AGN would need to contribute ∼25% of the H α flux in the central resolution element in order to cause the observed BPT offsets. We find weak (2 σ ) evidence of DIG emission at low surface brightnesses, yielding an implied total DIG emission fraction of ∼20%, which is not significant enough to be the dominant emission line driver in our sample. In general we find that the observed emission is dominated by star-forming H ii regions. We discuss trends with demographic properties and the possible role of α -enhanced abundance patterns in the emission spectra of high-redshift galaxies. Our results indicate that photoionization modeling with stellar population synthesis inputs is a valid tool to explore the specific star formation properties which may cause BPT offsets, to be explored in future work. 
    more » « less
  4. Abstract Lyαline profiles are a powerful probe of interstellar medium (ISM) structure, outflow speed, and Lyman-continuum escape fraction. In this paper, we present the Lyαline profiles of the Cosmic Origins Spectrograph (COS) Legacy Archive Spectroscopic SurveY, a sample rich in spectroscopic analogs of reionization-era galaxies. A large fraction of the spectra show a complex profile, consisting of a double-peaked Lyαemission profile in the bottom of a damped, Lyαabsorption trough. Such profiles reveal an inhomogeneous ISM. We successfully fit the damped Lyαabsorption and the Lyαemission profiles separately, but with complementary covering factors, a surprising result because this approach requires no Lyαexchange between high-NHiand low-NHipaths. The combined distribution of column densities is qualitatively similar to the bimodal distributions observed in numerical simulations. We find an inverse relation between Lyαpeak separation and the [Oiii]/[Oii] flux ratio, confirming that the covering fraction of Lyman-continuum-thin sightlines increases as the Lyαpeak separation decreases. We combine measurements of Lyαpeak separation and Lyαred peak asymmetry in a diagnostic diagram, which identifies six Lyman-continuum leakers in the COS Legacy Archive Spectrocopy SurveY (CLASSY) sample. We find a strong correlation between the Lyαtrough velocity and the outflow velocity measured from interstellar absorption lines. We argue that greater vignetting of the blueshifted Lyαpeak, relative to the redshifted peak, is the source of the well-known discrepancy between shell-model parameters and directly measured outflow properties. The CLASSY sample illustrates how scattering of Lyαphotons outside the spectroscopic aperture reshapes Lyαprofiles because the distances to these compact starbursts span a large range. 
    more » « less
  5. ABSTRACT Reionization-era galaxies tend to exhibit weak Ly α emission, likely reflecting attenuation from an increasingly neutral IGM. Recent observations have begun to reveal exceptions to this picture, with strong Ly α emission now known in four of the most massive z = 7–9 galaxies in the CANDELS fields, all of which also exhibit intense [O iii]+H β emission (EW > 800 Å). To better understand why Ly α is anomalously strong in a subset of massive z ≃ 7–9 galaxies, we have initiated an MMT/Binospec survey targeting a larger sample (N = 22) of similarly luminous (≃1–6 L$$^{\ast }_{\mathrm{UV}}$$) z ≃ 7 galaxies selected over very wide-area fields (∼3 deg2). We confidently (>7σ) detect Ly α in 78 per cent (7/9) of galaxies with strong [O iii]+H β emission (EW > 800 Å) as opposed to only 8 per cent (1/12) of galaxies with more moderate (EW = 200–800 Å) [O iii]+H β. We argue that the higher Ly α EWs of the strong [O iii]+H β population likely reflect enhanced ionizing photon production efficiency owing to their large sSFRs (≳30 Gyr−1). We also find evidence that Ly α transmission from massive galaxies declines less rapidly over 6 < z < 7 than in low-mass lensed systems. In particular, our data suggest no strong evolution in Ly α transmission, consistent with a picture wherein massive z ≃ 7 galaxies often reside in large ionized regions. We detect three closely separated (R = 1.7 physical Mpc) z ≃ 7 Ly α emitters in our sample, conceivably tracing a large ionized structure that is consistent with this picture. We detect tentative evidence for an overdensity in this region, implying a large ionizing photon budget in the surrounding volume. 
    more » « less