skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Disentangling the Physical Origin of Emission Line Ratio Offsets at High Redshift with Spatially Resolved Spectroscopy
Abstract We present spatially resolved Hubble Space Telescope grism spectroscopy of 15 galaxies at z ∼ 0.8 drawn from the DEEP2 survey. We analyze H α +[N ii ], [S ii ], and [S iii ] emission on kiloparsec scales to explore which mechanisms are powering emission lines at high redshifts, testing which processes may be responsible for the well-known offset of high-redshift galaxies from the z ∼ 0 locus in the [O iii ]/H β versus [N ii ]/H α Baldwin—Phillips—Terlevich (BPT) excitation diagram. We study spatially resolved emission-line maps to examine evidence for active galactic nuclei (AGN), shocks, diffuse ionized gas (DIG), or escaping ionizing radiation, all of which may contribute to the BPT offsets observed in our sample. We do not find significant evidence of AGN in our sample and quantify that, on average, AGN would need to contribute ∼25% of the H α flux in the central resolution element in order to cause the observed BPT offsets. We find weak (2 σ ) evidence of DIG emission at low surface brightnesses, yielding an implied total DIG emission fraction of ∼20%, which is not significant enough to be the dominant emission line driver in our sample. In general we find that the observed emission is dominated by star-forming H ii regions. We discuss trends with demographic properties and the possible role of α -enhanced abundance patterns in the emission spectra of high-redshift galaxies. Our results indicate that photoionization modeling with stellar population synthesis inputs is a valid tool to explore the specific star formation properties which may cause BPT offsets, to be explored in future work.  more » « less
Award ID(s):
1815475 2009313 1817125
PAR ID:
10326893
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
922
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate spatially resolved emission-line ratios in a sample of 219 galaxies (0.6 <z< 1.3) detected using the G102 grism on the Hubble Space Telescope Wide Field Camera 3 taken as part of the CANDELS LyαEmission at Reionization survey to measure ionization profiles and search for low-luminosity active galactic nuclei (AGN). We analyze [Oiii] and Hβemission-line maps, enabling us to spatially resolve the [Oiii]/Hβemission-line ratio across the galaxies in the sample. We compare the [Oiii]/Hβratio in galaxy centers and outer annular regions to measure ionization differences and investigate the potential of sources with nuclear ionization to host AGN. We investigate some of the individual galaxies that are candidates to host strong nuclear ionization and find that they often have low stellar mass and are undetected in X-rays, as expected for low-luminosity AGN in low-mass galaxies. We do not find evidence for a significant population of off-nuclear AGN or other clumps of off-nuclear ionization. We model the observed distribution of [Oiii]/Hβspatial profiles and find that most galaxies are consistent with a small or zero difference between their nuclear and off-nuclear line ratios, but 6%–16% of galaxies in the sample are likely to host nuclear [Oiii]/Hβthat is ∼0.5 dex higher than in their outer regions. This study is limited by large uncertainties in most of the measured [Oiii]/Hβspatial profiles; therefore, deeper data, e.g., from deeper HST/WFC3 programs or from JWST/NIRISS, are needed to more reliably measure the spatially resolved emission-line conditions of individual high-redshift galaxies. 
    more » « less
  2. Abstract We use Hubble Space Telescope Wide Field Camera 3 G102 and G141 grism spectroscopy to measure rest-frame optical emission-line ratios of 533 galaxies atz∼ 1.5 in the CANDELS LyαEmission at Reionization survey. We compare [Oiii]/Hβversus [Sii]/(Hα+ [Nii]) as an “unVO87” diagram for 461 galaxies and [Oiii]/Hβversus [Neiii]/[Oii] as an “OHNO” diagram for 91 galaxies. The unVO87 diagram does not effectively separate active galactic nuclei (AGN) and [Nev] sources from star-forming galaxies, indicating that the unVO87 properties of star-forming galaxies evolve with redshift and overlap with AGN emission-line signatures atz> 1. The OHNO diagram does effectively separate X-ray AGN and [Nev]-emitting galaxies from the rest of the population. We find that the [Oiii]/Hβline ratios are significantly anticorrelated with stellar mass and significantly correlated with log ( L H β ) , while [Sii]/(Hα+ [Nii]) is significantly anticorrelated with log ( L H β ) . Comparison with MAPPINGS V photoionization models indicates that these trends are consistent with lower metallicity and higher ionization in low-mass and high-star formation rate (SFR) galaxies. We do not find evidence for redshift evolution of the emission-line ratios outside of the correlations with mass and SFR. Our results suggest that the OHNO diagram of [Oiii]/Hβversus [Neiii]/[Oii] will be a useful indicator of AGN content and gas conditions in very high-redshift galaxies to be observed by the James Webb Space Telescope. 
    more » « less
  3. Abstract The Baldwin, Philips, & Terlevich diagram of [Oiii]/Hβversus [Nii]/Hα(hereafter N2-BPT) has long been used as a tool for classifying galaxies based on the dominant source of ionizing radiation. Recent observations have demonstrated that galaxies atz∼ 2 reside offset from local galaxies in the N2-BPT space. In this paper, we conduct a series of controlled numerical experiments to understand the potential physical processes driving this offset. We model nebular line emission in a large sample of galaxies, taken from thesimbacosmological hydrodynamic galaxy formation simulation, using thecloudyphotoionization code to compute the nebular line luminosities from Hiiregions. We find that the observed shift toward higher [Oiii]/Hβand [Nii]/Hαvalues at high redshift arises from sample selection: when we consider only the most massive galaxiesM*∼ 1010–11M, the offset naturally appears, due to their high metallicities. We predict that deeper observations that probe lower-mass galaxies will reveal galaxies that lie on a locus comparable toz∼ 0 observations. Even when accounting for samples-selection effects, we find that there is a subtle mismatch between simulations and observations. To resolve this discrepancy, we investigate the impact of varying ionization parameters, Hiiregion densities, gas-phase abundance patterns, and increasing radiation field hardness on N2-BPT diagrams. We find that either decreasing the ionization parameter or increasing the N/O ratio of galaxies at fixed O/H can move galaxies along a self-similar arc in N2-BPT space that is occupied by high-redshift galaxies. 
    more » « less
  4. Abstract Existing star-forming vs. active galactic nucleus (AGN) classification schemes using optical emission-line diagnostics mostly fail for low-metallicity and/or highly star-forming galaxies, missing AGN in typicalz∼ 0 dwarfs. To recover AGN in dwarfs with strong emission lines (SELs), we present a classification scheme optimizing the use of existing optical diagnostics. We use Sloan Digital Sky Survey emission-line catalogs overlapping the volume- and mass-limited REsolved Spectroscopy Of a Local VolumE (RESOLVE) and Environmental COntex (ECO) surveys to determine the AGN percentage in SEL dwarfs. Our photoionization grids show that the [Oiii]/Hβversus [Sii]/Hαdiagram (Siiplot) and [Oiii]/Hβversus [Oi]/Hαdiagram (Oiplot) are less metallicity sensitive and more successful in identifying dwarf AGN than the popular [Oiii]/Hβversus [Nii]/Hαdiagnostic (Niiplot or “BPT diagram”). We identify a new category of “star-forming AGN” (SF-AGN) classified as star-forming by the Niiplot but as AGN by the Siiand/or Oiplots. Including SF-AGN, we find thez∼ 0 AGN percentage in dwarfs with SELs to be ∼3%–16%, far exceeding most previous optical estimates (∼1%). The large range in our dwarf AGN percentage reflects differences in spectral fitting methodologies between catalogs. The highly complete nature of RESOLVE and ECO allows us to normalize strong emission-line galaxy statistics to the full galaxy population, reducing the dwarf AGN percentage to ∼0.6%–3.0%. The newly identified SF-AGN are mostly gas-rich dwarfs with halo mass <1011.5M, where highly efficient cosmic gas accretion is expected. Almost all SF-AGN also have low metallicities (Z≲ 0.4Z), demonstrating the advantage of our method. 
    more » « less
  5. null (Ed.)
    ABSTRACT We present constraints on the massive star and ionized gas properties for a sample of 62 star-forming galaxies at z ∼ 2.3. Using BPASS stellar population models, we fit the rest-UV spectra of galaxies in our sample to estimate age and stellar metallicity which, in turn, determine the ionizing spectrum. In addition to the median properties of well-defined subsets of our sample, we derive the ages and stellar metallicities for 30 high-SNR individual galaxies – the largest sample of individual galaxies at high redshift with such measurements. Most galaxies in this high-SNR subsample have stellar metallicities of 0.001 < Z* < 0.004. We then use Cloudy + BPASS photoionization models to match observed rest-optical line ratios and infer nebular properties. Our high-SNR subsample is characterized by a median ionization parameter and oxygen abundance, respectively, of log (U)med = −2.98 ± 0.25 and 12 + log (O/H)med = 8.48 ± 0.11. Accordingly, we find that all galaxies in our sample show evidence for α-enhancement. In addition, based on inferred log (U) and 12 + log (O/H) values, we find that the local relationship between ionization parameter and metallicity applies at z ∼ 2. Finally, we find that the high-redshift galaxies most offset from the local excitation sequence in the BPT diagram are the most α-enhanced. This trend suggests that α-enhancement resulting in a harder ionizing spectrum at fixed oxygen abundance is a significant driver of the high-redshift galaxy offset on the BPT diagram relative to local systems. The ubiquity of α-enhancement among z ∼ 2.3 star-forming galaxies indicates important differences between high-redshift and local galaxies that must be accounted for in order to derive physical properties at high redshift. 
    more » « less