skip to main content

Title: ACM KDD AI4Cyber: The 1st Workshop on Artificial Intelligence-enabled Cybersecurity Analytics
Despite significant contributions to various aspects of cybersecurity, cyber-attacks remain on the unfortunate rise. Increasingly, internationally recognized entities such as the National Science Foundation and National Science & Technology Council have noted Artificial Intelligence can help analyze billions of log files, Dark Web data, malware, and other data sources to help execute fundamental cybersecurity tasks. Our objective for the 1st Workshop on Artificial Intelligence-enabled Cybersecurity Analytics (half-day; co-located with ACM KDD) was to gather academic and practitioners to contribute recent work pertaining to AI-enabled cybersecurity analytics. We composed an outstanding, inter-disciplinary Program Committee with significant expertise in various aspects of AI-enabled Cybersecurity Analytics to evaluate the submitted work. Significant contributions to the half-day workshop were made in the areas of CTI, vulnerability assessment, and malware analysis.
; ;
Award ID(s):
1917117 2038483
Publication Date:
Journal Name:
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2021
Sponsoring Org:
National Science Foundation
More Like this
  1. Cybersecurity has rapidly emerged as a grand societal challenge of the 21st century. Innovative solutions to proactively tackle emerging cybersecurity challenges are essential to ensuring a safe and secure society. Artificial Intelligence (AI) has rapidly emerged as a viable approach for sifting through terabytes of heterogeneous cybersecurity data to execute fundamental cybersecurity tasks, such as asset prioritization, control allocation, vulnerability management, and threat detection, with unprecedented efficiency and effectiveness. Despite its initial promise, AI and cybersecurity have been traditionally siloed disciplines that relied on disparate knowledge and methodologies. Consequently, the AI for Cybersecurity discipline is in its nascency. In this article, we aim to provide an important step to progress the AI for Cybersecurity discipline. We first provide an overview of prevailing cybersecurity data, summarize extant AI for Cybersecurity application areas, and identify key limitations in the prevailing landscape. Based on these key issues, we offer a multi-disciplinary AI for Cybersecurity roadmap that centers on major themes such as cybersecurity applications and data, advanced AI methodologies for cybersecurity, and AI-enabled decision making. To help scholars and practitioners make significant headway in tackling these grand AI for Cybersecurity issues, we summarize promising funding mechanisms from the National Science Foundation (NSF) thatmore »can support long-term, systematic research programs. We conclude this article with an introduction of the articles included in this special issue.« less
  2. Over the past several decades, urban planning has considered a variety of advanced analysis methods with greater and lesser degrees of adoption. Geographic Information Systems (GIS) is probably the most notable, with others such as database management systems (DBMS), decision support systems (DSS), planning support systems (PSS), and expert systems (ES), having mixed levels of recognition and acceptance (Kontokosta, C. E. (2021). Urban informatics in the science and practice of planning. Journal of Planning Education and Research, 41(4), 382–395. doi:10.1177/0739456X18793716; Yigitcanlar, T., Desouza, K. C., Butler, L., & Roozkhosh, F. (2020). Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies, 13(6), 1473). Advances in information technologies have moved very slowly in the field of urban planning, more recently concerning ‘smart city’ technologies while revolutionizing other domains, such as consumer goods and services. Baidu, Amazon, Netflix, Google, and many others are using these technologies to gain insights into consumer behaviour and characteristics and improve supply chains and logistics. This is an opportune time for urban planners to consider the application of AI-related techniques given vast increases in data availability, increased processing speeds, and increased popularity and development of planning relatedmore »applications. Research on these topics by urban planning scholars has increased over the past few years, but there is little evidence to suggest that the results are making it into the hands of professional planners (Batty, M. (2018). Artificial intelligence and smart cities. Environment and Planning B: Urban Analytics and City Science, 45(1), 3–6; Batty, M. (2021). Planning education in the digital age. Environment and Planning B: Urban Analytics and City Science, 48(2), 207–211). Others encourage planners to leverage the ubiquity of data and advances in computing to enhance redistributive justice in information resources and procedural justice in decision-making among marginalized communities (Boeing, G., Besbris, M., Schachter, A., & Kuk, J. (2020). Housing search in the Age of Big data: Smarter cities or the same Old blind spots? Housing Policy Debate, 31(1), 112–126; Goodspeed, R. (2015). Smart cities: Moving beyond urban cybernetics to tackle wicked problems. Cambridge journal of regions, Economy and Society, 8(1), 79–92). This article highlights findings from a recent literature review on AI in planning and discusses the results of a national survey of urban planners about their perspectives on AI adoption and concerns they have expressed about its broader use in the profession. Currently, the outlook is mixed, matching how urban planners initially viewed the early stages of computer adoption within the profession. And yet today, personal computers are essential to any job.« less
  3. Events such as Facebook-Cambridge Analytica scandal and data aggregation efforts by technology providers have illustrated how fragile modern society is to privacy violations. Internationally recognized entities such as the National Science Foundation (NSF) have indicated that Artificial Intelligence (AI)-enabled models, artifacts, and systems can efficiently and effectively sift through large quantities of data from legal documents, social media, Dark Web sites, and other sources to curb privacy violations. Yet considerable efforts are still required for understanding prevailing data sources, systematically developing AI-enabled privacy analytics to tackle emerging challenges, and deploying systems to address critical privacy needs. To this end, we provide an overview of prevailing data sources that can support AI-enabled privacy analytics; a multi-disciplinary research framework that connects data, algorithms, and systems to tackle emerging AI-enabled privacy analytics challenges such as entity resolution, privacy assistance systems, privacy risk modeling, and more; a summary of selected funding sources to support high-impact privacy analytics research; and an overview of prevailing conference and journal venues that can be leveraged to share and archive privacy analytics research. We conclude this paper with an introduction of the papers included in this special issue.
  4. Abstract Machine learning and artificial intelligence (ML/AI) methods have been used successfully in recent years to solve problems in many areas, including image recognition, unsupervised and supervised classification, game-playing, system identification and prediction, and autonomous vehicle control. Data-driven machine learning methods have also been applied to fusion energy research for over 2 decades, including significant advances in the areas of disruption prediction, surrogate model generation, and experimental planning. The advent of powerful and dedicated computers specialized for large-scale parallel computation, as well as advances in statistical inference algorithms, have greatly enhanced the capabilities of these computational approaches to extract scientific knowledge and bridge gaps between theoretical models and practical implementations. Large-scale commercial success of various ML/AI applications in recent years, including robotics, industrial processes, online image recognition, financial system prediction, and autonomous vehicles, have further demonstrated the potential for data-driven methods to produce dramatic transformations in many fields. These advances, along with the urgency of need to bridge key gaps in knowledge for design and operation of reactors such as ITER, have driven planned expansion of efforts in ML/AI within the US government and around the world. The Department of Energy (DOE) Office of Science programs in Fusion Energy Sciences (FES)more »and Advanced Scientific Computing Research (ASCR) have organized several activities to identify best strategies and approaches for applying ML/AI methods to fusion energy research. This paper describes the results of a joint FES/ASCR DOE-sponsored Research Needs Workshop on Advancing Fusion with Machine Learning, held April 30–May 2, 2019, in Gaithersburg, MD (full report available at ). The workshop drew on broad representation from both FES and ASCR scientific communities, and identified seven Priority Research Opportunities (PRO’s) with high potential for advancing fusion energy. In addition to the PRO topics themselves, the workshop identified research guidelines to maximize the effectiveness of ML/AI methods in fusion energy science, which include focusing on uncertainty quantification, methods for quantifying regions of validity of models and algorithms, and applying highly integrated teams of ML/AI mathematicians, computer scientists, and fusion energy scientists with domain expertise in the relevant areas.« less
  5. With the rapid technological advancement, security has become a major issue due to the increase in malware activity that poses a serious threat to the security and safety of both computer systems and stakeholders. To maintain stakeholder’s, particularly, end user’s security, protecting the data from fraudulent efforts is one of the most pressing concerns. A set of malicious programming code, scripts, active content, or intrusive software that is designed to destroy intended computer systems and programs or mobile and web applications is referred to as malware. According to a study, naive users are unable to distinguish between malicious and benign applications. Thus, computer systems and mobile applications should be designed to detect malicious activities towards protecting the stakeholders. A number of algorithms are available to detect malware activities by utilizing novel concepts including Artificial Intelligence, Machine Learning, and Deep Learning. In this study, we emphasize Artificial Intelligence (AI) based techniques for detecting and preventing malware activity. We present a detailed review of current malware detection technologies, their shortcomings, and ways to improve efficiency. Our study shows that adopting futuristic approaches for the development of malware detection applications shall provide significant advantages. The comprehension of this synthesis shall help researchers formore »further research on malware detection and prevention using AI.« less