skip to main content

Title: A Multi-Disciplinary Perspective for Conducting Artificial Intelligence-enabled Privacy Analytics: Connecting Data, Algorithms, and Systems
Events such as Facebook-Cambridge Analytica scandal and data aggregation efforts by technology providers have illustrated how fragile modern society is to privacy violations. Internationally recognized entities such as the National Science Foundation (NSF) have indicated that Artificial Intelligence (AI)-enabled models, artifacts, and systems can efficiently and effectively sift through large quantities of data from legal documents, social media, Dark Web sites, and other sources to curb privacy violations. Yet considerable efforts are still required for understanding prevailing data sources, systematically developing AI-enabled privacy analytics to tackle emerging challenges, and deploying systems to address critical privacy needs. To this end, we provide an overview of prevailing data sources that can support AI-enabled privacy analytics; a multi-disciplinary research framework that connects data, algorithms, and systems to tackle emerging AI-enabled privacy analytics challenges such as entity resolution, privacy assistance systems, privacy risk modeling, and more; a summary of selected funding sources to support high-impact privacy analytics research; and an overview of prevailing conference and journal venues that can be leveraged to share and archive privacy analytics research. We conclude this paper with an introduction of the papers included in this special issue.  more » « less
Award ID(s):
1917117 2041770 2038483 1936370
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Management Information Systems
Page Range / eLocation ID:
1 to 18
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cybersecurity has rapidly emerged as a grand societal challenge of the 21st century. Innovative solutions to proactively tackle emerging cybersecurity challenges are essential to ensuring a safe and secure society. Artificial Intelligence (AI) has rapidly emerged as a viable approach for sifting through terabytes of heterogeneous cybersecurity data to execute fundamental cybersecurity tasks, such as asset prioritization, control allocation, vulnerability management, and threat detection, with unprecedented efficiency and effectiveness. Despite its initial promise, AI and cybersecurity have been traditionally siloed disciplines that relied on disparate knowledge and methodologies. Consequently, the AI for Cybersecurity discipline is in its nascency. In this article, we aim to provide an important step to progress the AI for Cybersecurity discipline. We first provide an overview of prevailing cybersecurity data, summarize extant AI for Cybersecurity application areas, and identify key limitations in the prevailing landscape. Based on these key issues, we offer a multi-disciplinary AI for Cybersecurity roadmap that centers on major themes such as cybersecurity applications and data, advanced AI methodologies for cybersecurity, and AI-enabled decision making. To help scholars and practitioners make significant headway in tackling these grand AI for Cybersecurity issues, we summarize promising funding mechanisms from the National Science Foundation (NSF) that can support long-term, systematic research programs. We conclude this article with an introduction of the articles included in this special issue. 
    more » « less
  2. Federal funding agencies and industry entities are seeking innovative approaches to address the ever-growing cybersecurity crisis. Increasingly, numerous cybersecurity thought leaders are indicating that Artificial Intelligence (AI)-enabled analytics can help tackle key cybersecurity tasks and deploy defenses. This half-day workshop, co-located with ACM KDD, sought to attain significant research contributions to various aspects of AI-enabled analytics for cybersecurity applications and deployable defense solutions from academics and practitioners. This workshop was a joint workshop of the 2021 AI-enabled Cybersecurity Analytics and 2021 International Workshop on Deployable Machine Learning for Security Defense. As such, we developed an interdisciplinary Program Committee with significant experience in various aspects of AI, cybersecurity, and/or deployable defense. 
    more » « less
  3. Abstract

    Recent advancements in artificial intelligence (AI) have seen the emergence of smart video surveillance (SVS) in many practical applications, particularly for building safer and more secure communities in our urban environments. Cognitive tasks, such as identifying objects, recognizing actions, and detecting anomalous behaviors, can produce data capable of providing valuable insights to the community through statistical and analytical tools. However, artificially intelligent surveillance systems design requires special considerations for ethical challenges and concerns. The use and storage of personally identifiable information (PII) commonly pose an increased risk to personal privacy. To address these issues, this paper identifies the privacy concerns and requirements needed to address when designing AI-enabled smart video surveillance. Further, we propose the first end-to-end AI-enabled privacy-preserving smart video surveillance system that holistically combines computer vision analytics, statistical data analytics, cloud-native services, and end-user applications. Finally, we propose quantitative and qualitative metrics to evaluate intelligent video surveillance systems. The system shows the 17.8 frame-per-second (FPS) processing in extreme video scenes. However, considering privacy in designing such a system results in preferring the pose-based algorithm to the pixel-based one. This choice resulted in dropping accuracy in both action and anomaly detection tasks. The results drop from 97.48% to 73.72% in anomaly detection and 96% to 83.07% in the action detection task. On average, the latency of the end-to-end system is 36.1 seconds.

    more » « less
  4. Emerging Distributed AI systems are revolutionizing big data computing and data processing capabilities with growing economic and societal impact. However, recent studies have identified new attack surfaces and risks caused by security, privacy, and fairness issues in AI systems. In this paper, we review representative techniques, algorithms, and theoretical foundations for trustworthy distributed AI through robustness guarantee, privacy protection, and fairness awareness in distributed learning. We first provide a brief overview of alternative architectures for distributed learning, discuss inherent vulnerabilities for security, privacy, and fairness of AI algorithms in distributed learning, and analyze why these problems are present in distributed learning regardless of specific architectures. Then we provide a unique taxonomy of countermeasures for trustworthy distributed AI, covering (1) robustness to evasion attacks and irregular queries at inference, and robustness to poisoning attacks, Byzantine attacks, and irregular data distribution during training; (2) privacy protection during distributed learning and model inference at deployment; and (3) AI fairness and governance with respect to both data and models. We conclude with a discussion on open challenges and future research directions toward trustworthy distributed AI, such as the need for trustworthy AI policy guidelines, the AI responsibility-utility co-design, and incentives and compliance.

    more » « less
  5. Nesmachnow, S. ; Castro, H. ; Tchernykh, A. (Ed.)
    Artificial intelligence (AI) is transforming research through analysis of massive datasets and accelerating simulations by factors of up to a billion. Such acceleration eclipses the speedups that were made possible though improvements in CPU process and design and other kinds of algorithmic advances. It sets the stage for a new era of discovery in which previously intractable challenges will become surmountable, with applications in fields such as discovering the causes of cancer and rare diseases, developing effective, affordable drugs, improving food sustainability, developing detailed understanding of environmental factors to support protection of biodiversity, and developing alternative energy sources as a step toward reversing climate change. To succeed, the research community requires a high-performance computational ecosystem that seamlessly and efficiently brings together scalable AI, general-purpose computing, and large-scale data management. The authors, at the Pittsburgh Supercomputing Center (PSC), launched a second-generation computational ecosystem to enable AI-enabled research, bringing together carefully designed systems and groundbreaking technologies to provide at no cost a uniquely capable platform to the research community. It consists of two major systems: Neocortex and Bridges-2. Neocortex embodies a revolutionary processor architecture to vastly shorten the time required for deep learning training, foster greater integration of artificial deep learning with scientific workflows, and accelerate graph analytics. Bridges-2 integrates additional scalable AI, high-performance computing (HPC), and high-performance parallel file systems for simulation, data pre- and post-processing, visualization, and Big Data as a Service. Neocortex and Bridges-2 are integrated to form a tightly coupled and highly flexible ecosystem for AI- and data-driven research. 
    more » « less