Abstract Structure-based drug design targeting the SARS-CoV-2 virus has been greatly facilitated by available virus-related protein structures. However, there is an urgent need for effective, safe small-molecule drugs to control the spread of the virus and variants. While many efforts are devoted to searching for compounds that selectively target individual proteins, we investigated the potential interactions between eight proteins related to SARS-CoV-2 and more than 600 compounds from a traditional Chinese medicine which has proven effective at treating the viral infection. Our original ensemble docking and cooperative docking approaches, followed by a total of over 16-micorsecond molecular simulations, have identified at least 9 compounds that may generally bind to key SARS-CoV-2 proteins. Further, we found evidence that some of these compounds can simultaneously bind to the same target, potentially leading to cooperative inhibition to SARS-CoV-2 proteins like the Spike protein and the RNA-dependent RNA polymerase. These results not only present a useful computational methodology to systematically assess the anti-viral potential of small molecules, but also point out a new avenue to seek cooperative compounds toward cocktail therapeutics to target more SARS-CoV-2-related proteins.
more »
« less
Essential Dynamics Ensemble Docking for Structure-Based GPCR Drug Discovery
The lack of biologically relevant protein structures can hinder rational design of small molecules to target G protein-coupled receptors (GPCRs). While ensemble docking using multiple models of the protein target is a promising technique for structure-based drug discovery, model clustering and selection still need further investigations to achieve both high accuracy and efficiency. In this work, we have developed an original ensemble docking approach, which identifies the most relevant conformations based on the essential dynamics of the protein pocket. This approach is applied to the study of small-molecule antagonists for the PAC1 receptor, a class B GPCR and a regulator of stress. As few as four representative PAC1 models are selected from simulations of a homology model and then used to screen three million compounds from the ZINC database and 23 experimentally validated compounds for PAC1 targeting. Our essential dynamics ensemble docking (EDED) approach can effectively reduce the number of false negatives in virtual screening and improve the accuracy to seek potent compounds. Given the cost and difficulties to determine membrane protein structures for all the relevant states, our methodology can be useful for future discovery of small molecules to target more other GPCRs, either with or without experimental structures.
more »
« less
- Award ID(s):
- 1848444
- PAR ID:
- 10336920
- Date Published:
- Journal Name:
- Frontiers in Molecular Biosciences
- Volume:
- 9
- ISSN:
- 2296-889X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Virtual screening is a cost- and time-effective alternative to traditional high-throughput screening in the drug discovery process. Both virtual screening approaches, structure-based molecular docking and ligand-based cheminformatics, suffer from computational cost, low accuracy, and/or reliance on prior knowledge of a ligand that binds to a given target. Here, we propose a neural network framework, NeuralDock, which accelerates the process of high-quality computational docking by a factor of 10 6 , and does not require prior knowledge of a ligand that binds to a given target. By approximating both protein-small molecule conformational sampling and energy-based scoring, NeuralDock accurately predicts the binding energy, and affinity of a protein-small molecule pair, based on protein pocket 3D structure and small molecule topology. We use NeuralDock and 25 GPUs to dock 937 million molecules from the ZINC database against superoxide dismutase-1 in 21 h, which we validate with physical docking using MedusaDock. Due to its speed and accuracy, NeuralDock may be useful in brute-force virtual screening of massive chemical libraries and training of generative drug models.more » « less
-
Abstract While significant advances have been made in predicting static protein structures, the inherent dynamics of proteins, modulated by ligands, are crucial for understanding protein function and facilitating drug discovery. Traditional docking methods, frequently used in studying protein-ligand interactions, typically treat proteins as rigid. While molecular dynamics simulations can propose appropriate protein conformations, they’re computationally demanding due to rare transitions between biologically relevant equilibrium states. In this study, we present DynamicBind, a deep learning method that employs equivariant geometric diffusion networks to construct a smooth energy landscape, promoting efficient transitions between different equilibrium states. DynamicBind accurately recovers ligand-specific conformations from unbound protein structures without the need for holo-structures or extensive sampling. Remarkably, it demonstrates state-of-the-art performance in docking and virtual screening benchmarks. Our experiments reveal that DynamicBind can accommodate a wide range of large protein conformational changes and identify cryptic pockets in unseen protein targets. As a result, DynamicBind shows potential in accelerating the development of small molecules for previously undruggable targets and expanding the horizons of computational drug discovery.more » « less
-
The goal of precision medicine is to utilize our knowledge of the molecular causes of disease to better diagnose and treat patients. However, there is a substantial mismatch between the small number of food and drug administration (FDA)‐approved drugs and annotated coding variants compared to the needs of precision medicine. This review introduces the concept of physics‐based precision medicine, a scalable framework that promises to improve our understanding of sequence–function relationships and accelerate drug discovery. We show that accounting for the ensemble of structures a protein adopts in solution with computer simulations overcomes many of the limitations imposed by assuming a single protein structure. We highlight studies of protein dynamics and recent methods for the analysis of structural ensembles. These studies demonstrate that differences in conformational distributions predict functional differences within protein families and between variants. Thanks to new computational tools that are providing unprecedented access to protein structural ensembles, this insight may enable accurate predictions of variant pathogenicity for entire libraries of variants. We further show that explicitly accounting for protein ensembles, with methods like alchemical free energy calculations or docking to Markov state models, can uncover novel lead compounds. To conclude, we demonstrate that cryptic pockets, or cavities absent in experimental structures, provide an avenue to target proteins that are currently considered undruggable. Taken together, our review provides a roadmap for the field of protein science to accelerate precision medicine.more » « less
-
Abstract An important question is how well the models submitted to CASP retain the properties of target structures. We investigate several properties related to binding. First we explore the binding of small molecules as probes, and count the number of interactions between each residue and such probes, resulting in a binding fingerprint. The similarity between two fingerprints, one for the X‐ray structure and the other for a model, is determined by calculating their correlation coefficient. The fingerprint similarity weakly correlates with global measures of accuracy, and GDT_TS higher than 80 is a necessary but not sufficient condition for the conservation of surface binding properties. The advantage of this approach is that it can be carried out without information on potential ligands and their binding sites. The latter information was available for a few targets, and we explored whether the CASP14 models can be used to predict binding sites and to dock small ligands. Finally, we tested the ability of models to reproduce protein–protein interactions by docking both the X‐ray structures and the models to their interaction partners in complexes. The analysis showed that in CASP14 the quality of individual domain models is approaching that offered by X‐ray crystallography, and hence such models can be successfully used for the identification of binding and regulatory sites, as well as for assembling obligatory protein–protein complexes. Success of ligand docking, however, often depends on fine details of the binding interface, and thus may require accounting for conformational changes by simulation methods.more » « less
An official website of the United States government

