skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: On the Equivalence between Neural Network and Support Vector Machine
Recent research shows that the dynamics of an infinitely wide neural network (NN) trained by gradient descent can be characterized by Neural Tangent Kernel (NTK) [27]. Under the squared loss, the infinite-width NN trained by gradient descent with an infinitely small learning rate is equivalent to kernel regression with NTK [4]. However, the equivalence is only known for ridge regression currently [6], while the equivalence between NN and other kernel machines (KMs), e.g. support vector machine (SVM), remains unknown. Therefore, in this work, we propose to establish the equivalence between NN and SVM, and specifically, the infinitely wide NN trained by soft margin loss and the standard soft margin SVM with NTK trained by subgradient descent. Our main theoretical results include establishing the equivalence between NN and a broad family of L2 regularized KMs with finite width bounds, which cannot be handled by prior work, and showing that every finite-width NN trained by such regularized loss functions is approximately a KM. Furthermore, we demonstrate our theory can enable three practical applications, including (i) non-vacuous generalization bound of NN via the corresponding KM; (ii) nontrivial robustness certificate for the infinite-width NN (while existing robustness verification methods would provide vacuous bounds); (iii) intrinsically more robust infinite-width NNs than those from previous kernel regression.  more » « less
Award ID(s):
2107189
NSF-PAR ID:
10336943
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It has become standard to solve NLP tasks by fine-tuning pre-trained language models (LMs), especially in low-data settings. There is minimal theoretical understanding of empirical success, e.g., why fine-tuning a model with $10^8$ or more parameters on a couple dozen training points does not result in overfitting. We investigate whether the Neural Tangent Kernel (NTK)—which originated as a model to study the gradient descent dynamics of infinitely wide networks with suitable random initialization—describes fine-tuning of pre-trained LMs. This study was inspired by the decent performance of NTK for computer vision tasks (Wei et al., 2022). We extend the NTK formalism to Adam and use Tensor Programs (Yang, 2020) to characterize conditions under which the NTK lens may describe fine-tuning updates to pre-trained language models. Extensive experiments on 14 NLP tasks validate our theory and show that formulating the downstream task as a masked word prediction problem through prompting often induces kernel-based dynamics during fine-tuning. Finally, we use this kernel view to propose an explanation for the success of parameter-efficient subspace-based fine-tuning methods. 
    more » « less
  2. Motivated by both theory and practice, we study how random pruning of the weights affects a neural network's neural tangent kernel (NTK). In particular, this work establishes an equivalence of the NTKs between a fully-connected neural network and its randomly pruned version. The equivalence is established under two cases. The first main result studies the infinite-width asymptotic. It is shown that given a pruning probability, for fully-connected neural networks with the weights randomly pruned at the initialization, as the width of each layer grows to infinity sequentially, the NTK of the pruned neural network converges to the limiting NTK of the original network with some extra scaling. If the network weights are rescaled appropriately after pruning, this extra scaling can be removed. The second main result considers the finite-width case. It is shown that to ensure the NTK's closeness to the limit, the dependence of width on the sparsity parameter is asymptotically linear, as the NTK's gap to its limit goes down to zero. Moreover, if the pruning probability is set to zero (i.e., no pruning), the bound on the required width matches the bound for fully-connected neural networks in previous works up to logarithmic factors. The proof of this result requires developing a novel analysis of a network structure which we called mask-induced pseudo-networks. Experiments are provided to evaluate our results. 
    more » « less
  3. Abstract

    We study infinite limits of neural network quantum states (-NNQS), which exhibit representation power through ensemble statistics, and also tractable gradient descent dynamics. Ensemble averages of entanglement entropies are expressed in terms of neural network correlators, and architectures that exhibit volume-law entanglement are presented. The analytic calculations of entanglement entropy bound are tractable because the ensemble statistics are simplified in the Gaussian process limit. A general framework is developed for studying the gradient descent dynamics of neural network quantum states (NNQS), using a quantum state neural tangent kernel (QS-NTK). For-NNQS the training dynamics is simplified, since the QS-NTK becomes deterministic and constant. An analytic solution is derived for quantum state supervised learning, which allows an-NNQS to recover any target wavefunction. Numerical experiments on finite and infinite NNQS in the transverse field Ising model and Fermi Hubbard model demonstrate excellent agreement with theory.-NNQS opens up new opportunities for studying entanglement and training dynamics in other physics applications, such as in finding ground states.

     
    more » « less
  4. Meila, Marina ; Zhang, Tong (Ed.)
    Federated Learning (FL) is an emerging learning scheme that allows different distributed clients to train deep neural networks together without data sharing. Neural networks have become popular due to their unprecedented success. To the best of our knowledge, the theoretical guarantees of FL concerning neural networks with explicit forms and multi-step updates are unexplored. Nevertheless, training analysis of neural networks in FL is non-trivial for two reasons: first, the objective loss function we are optimizing is non-smooth and non-convex, and second, we are even not updating in the gradient direction. Existing convergence results for gradient descent-based methods heavily rely on the fact that the gradient direction is used for updating. The current paper presents a new class of convergence analysis for FL, Federated Neural Tangent Kernel (FL-NTK), which corresponds to overparamterized ReLU neural networks trained by gradient descent in FL and is inspired by the analysis in Neural Tangent Kernel (NTK). Theoretically, FL-NTK converges to a global-optimal solution at a linear rate with properly tuned learning parameters. Furthermore, with proper distributional assumptions, FL-NTK can also achieve good generalization. The proposed theoretical analysis scheme can be generalized to more complex neural networks. 
    more » « less
  5. null (Ed.)
    Federated Learning (FL) is an emerging learning scheme that allows different distributed clients to train deep neural networks together without data sharing. Neural networks have become popular due to their unprecedented success. To the best of our knowledge, the theoretical guarantees of FL concerning neural networks with explicit forms and multi-step updates are unexplored. Nevertheless, training analysis of neural networks in FL is non-trivial for two reasons: first, the objective loss function we are optimizing is non-smooth and non-convex, and second, we are even not updating in the gradient direction. Existing convergence results for gradient descent-based methods heavily rely on the fact that the gradient direction is used for updating. This paper presents a new class of convergence analysis for FL, Federated Learning Neural Tangent Kernel (FL-NTK), which corresponds to over-paramterized ReLU neural networks trained by gradient descent in FL and is inspired by the analysis in Neural Tangent Kernel (NTK). Theoretically, FL-NTK converges to a global-optimal solution at a linear rate with properly tuned learning parameters. Furthermore, with proper distributional assumptions, FL-NTK can also achieve good generalization. 
    more » « less