Constructing a spanning tree of a graph is one of the most basic tasks in graph theory. We consider a relaxed version of this problem in the setting of local algorithms. The relaxation is that the constructed subgraph is a sparse spanning subgraph containing at most (1+ϵ)n edges (where n is the number of vertices and ϵ is a given approximation/sparsity parameter). In the local setting, the goal is to quickly determine whether a given edge e belongs to such a subgraph, without constructing the whole subgraph, but rather by inspecting (querying) the local neighborhood of e. The challenge is to maintain consistency. That is, to provide answers concerning different edges according to the same spanning subgraph. We first show that for general bounded-degree graphs, the query complexity of any such algorithm must be Ω(n−−√). This lower bound holds for constant-degree graphs that have high expansion. Next we design an algorithm for (bounded-degree) graphs with high expansion, obtaining a result that roughly matches the lower bound. We then turn to study graphs that exclude a fixed minor (and are hence non-expanding). We design an algorithm for such graphs, which may have an unbounded maximum degree. The query complexity of this algorithm is poly(1/ϵ,h) (independent of n and the maximum degree), where h is the number of vertices in the excluded minor. Though our two algorithms are designed for very different types of graphs (and have very different complexities), on a high-level there are several similarities, and we highlight both the similarities and the differences.
more »
« less
The Kauffman bracket expansion of a generalized crossing
We examine the Kauffman bracket expansion of the generalized crossing $$\Delta_n$$, a half-twist on $$n$$ parallel strands, as an element of the Temperley-Lieb algebra with coefficients in $$\mathbb{Z}[A,A^{-1}]$$. In particular, we determine the minimum and maximum degrees of all possible coefficients appearing in this expansion. Our main theorem shows that the maximum such degree is quadratic in $$n$$, while the minimum such degree is linear. We also include an appendix with explicit expansions for $$n$$ at most six.
more »
« less
- Award ID(s):
- 2005518
- PAR ID:
- 10336957
- Date Published:
- Journal Name:
- Topology proceedings
- Volume:
- 58
- ISSN:
- 0146-4124
- Page Range / eLocation ID:
- 289-301
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We prove that the maximum likelihood degree of a matroid M equals its beta invariant β(M). For an element e of M that is neither a loop nor a coloop, this is defined to be the degree of the intersection of the Bergman fan of (M,e) and the inverted Bergman fan of N = (M/e)^⊥. Equivalently, for a generic vector w ∈ R^E−e, this is the number of ways to find weights (0, x) on M and y on N with x + y = w such that on each circuit of M (resp. N), the minimum x-weight (resp. y-weight) occurs at least twice.more » « less
-
Abstract Let $$\gamma(G)$$ and $${\gamma _ \circ }(G)$$ denote the sizes of a smallest dominating set and smallest independent dominating set in a graph G, respectively. One of the first results in probabilistic combinatorics is that if G is an n -vertex graph of minimum degree at least d , then $$\begin{equation}\gamma(G) \leq \frac{n}{d}(\log d + 1).\end{equation}$$ In this paper the main result is that if G is any n -vertex d -regular graph of girth at least five, then $$\begin{equation}\gamma_(G) \leq \frac{n}{d}(\log d + c)\end{equation}$$ for some constant c independent of d . This result is sharp in the sense that as $$d \rightarrow \infty$$ , almost all d -regular n -vertex graphs G of girth at least five have $$\begin{equation}\gamma_(G) \sim \frac{n}{d}\log d.\end{equation}$$ Furthermore, if G is a disjoint union of $${n}/{(2d)}$$ complete bipartite graphs $$K_{d,d}$$ , then $${\gamma_\circ}(G) = \frac{n}{2}$$ . We also prove that there are n -vertex graphs G of minimum degree d and whose maximum degree grows not much faster than d log d such that $${\gamma_\circ}(G) \sim {n}/{2}$$ as $$d \rightarrow \infty$$ . Therefore both the girth and regularity conditions are required for the main result.more » « less
-
We consider the classical Minimum Crossing Number problem: given an n-vertex graph G, compute a drawing of G in the plane, while minimizing the number of crossings between the images of its edges. This is a fundamental and extensively studied problem, whose approximability status is widely open. In all currently known approximation algorithms, the approximation factor depends polynomially on Δ – the maximum vertex degree in G. The best current approximation algorithm achieves an O(n1/2−· (Δ·logn))-approximation, for a small fixed constant є, while the best negative result is APX-hardness, leaving a large gap in our understanding of this basic problem. In this paper we design a randomized O(2O((logn)7/8loglogn)·(Δ))-approximation algorithm for Minimum Crossing Number. This is the first approximation algorithm for the problem that achieves a subpolynomial in n approximation factor (albeit only in graphs whose maximum vertex degree is subpolynomial in n). In order to achieve this approximation factor, we design a new algorithm for a closely related problem called Crossing Number with Rotation System, in which, for every vertex v∈ V(G), the circular ordering, in which the images of the edges incident to v must enter the image of v in the drawing is fixed as part of input. Combining this result with the recent reduction of [Chuzhoy, Mahabadi, Tan ’20] immediately yields the improved approximation algorithm for Minimum Crossing Number.more » « less
-
Given a function f on (F_2_^n, we study the following problem. What is the largest affine subspace U such that when restricted to U, all the non-trivial Fourier coefficients of f are very small? For the natural class of bounded Fourier degree d functions f : (F_2)^n → [−1, 1], we show that there exists an affine subspace of dimension at least ˜Ω (n^(1/d!) k^(−2)), wherein all of f ’s nontrivial Fourier coefficients become smaller than 2^(−k) . To complement this result, we show the existence of degree d functions with coefficients larger than 2^(−d log n) when restricted to any affine subspace of dimension larger than Ω(dn^(1/(d−1))). In addition, we give explicit examples of functions with analogous but weaker properties. Along the way, we provide multiple characterizations of the Fourier coefficients of functions restricted to subspaces of (F_2)^n that may be useful in other contexts. Finally, we highlight applications and connections of our results to parity kill number and affine dispersers.more » « less
An official website of the United States government

