Abstract Due to the ubiquity of textiles in the lives, electronic textiles (E‐textiles) have emerged as a future technology capable of addressing a myriad of challenges from mixed reality interfaces, on‐garment climate control, patient diagnostics, and interactive athletic wear. However, providing sufficient electrical power in a textile form factor has remained elusive. To address this issue, different approaches are discussed, starting with supercapacitors' advantages and limitations and material choices for textile‐based supercapacitors before discussing proper data analysis and design considerations of textile‐based energy storage to power wearable electronics.
more »
« less
User-Controlled Multi-Zone Jacket for Thermal Microclimate Regulation
The ability to control one's personal microclimate allows for customized comfort, reduced energy expenditure, and better human performance. Here we present the design of a multi-zone user-controllable heated jacket. The garment uses a multi-layer textile approach to provide e-textile heating and thermal insulation. Heating zones are controlled by the user through a sleeve-mounted multi-sensor e-textile interface. A custom textile-integrated 3D printed strain-relief support protects the interface and provides a counter-force for manual interaction. The garment is designed for everyday wearability in a physical and aesthetic form intended to blend in with everyday clothing.
more »
« less
- Award ID(s):
- 1646543
- PAR ID:
- 10337010
- Date Published:
- Journal Name:
- 2021 International Symposium on Wearable Computers
- Page Range / eLocation ID:
- 203 to 206
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Heating devices offer particular benefits in cold climates and to those with thermoregulatory or vasospastic disorders, like Reynaud’s syndrome. Heating devices can be used to moderate a wearer’s microclimate to alleviate thermal discomfort and pain, especially in the distal extremities where thermal sensitivity is the highest. Applying insulation on top of wearables with heating components can reduce both heat lost to the environment, as well as power needs for maintaining thermal comfort. Here, we evaluated one stitched, heated textile garment with eight textile insulation materials to assess heat propagation (measured by five thermistors on a mannequin hand and one in the surrounding, enclosed environment) and wearability (measured from tests of fabric weight, thickness, flexural rigidity, and permeance). Results find energy conserved by all materials, but wearability drawbacks for some strong insulators. Thicker materials generally had higher insulative properties, and reduced heat propagation to the indirect heating regions, specifically the finger and thumb. Additionally, heat propagation through to the environment was stronger than to the finger and thumb.more » « less
-
Smart textiles development is combining computing and textile technologies to create tactile, functional objects such as smart garments, soft medical devices, and space suits. However, the field also combines the massive waste streams of both the digital electronics and textiles industries. The following work explores how HCI researchers might be poised to address sustainability and waste in future smart textiles development through interventions at design time. Specifically, we perform a design inquiry into techniques and practices for reclaiming and reusing smart textiles materials and explore how such techniques can be integrated into smart textiles design tools. Beginning with a practice in sustainable or "slow" fashion, unravelling a garment into yarn, the suite of explorations titled "Unfabricate" probes values of time and labor in crafting a garment; speculates how a smart textile garment may be designed with reuse in mind; and imagines how electronic and textile components may be given new life in novel uses.more » « less
-
The e-textile landscape has enabled creators to combine textile materiality with electronic capability. However, the tools that e-textile creators use have been adapted from traditional textile or hardware tools. This puts creators at a disadvantage, as e-textile projects present new and unique challenges that currently can only be addressed using a non-specialized toolset. This paper introduces the first iteration of a wearable e-textile debugging tool to assist novice engineers in problem solving e-textile circuitry errors. These errors are often only detected after the project is fully built and are resolved only by disassembling the circuit. Our tool actively monitors the continuity of the conductive thread as the user stitches, which enables the user to identify and correct circuitry errors as they create their project.more » « less
-
Textiles hold great promise as a soft yet durable material for building comfortable robotic wearables and assistive devices at low cost. Nevertheless, the development of smart wearables composed entirely of textiles has been hindered by the lack of a viable sheet-based logic architecture that can be implemented using conventional fabric materials and textile manufacturing processes. Here, we develop a fully textile platform for embedding pneumatic digital logic in wearable devices. Our logic-enabled textiles support combinational and sequential logic functions, onboard memory storage, user interaction, and direct interfacing with pneumatic actuators. In addition, they are designed to be lightweight, easily integrable into regular clothing, made using scalable fabrication techniques, and durable enough to withstand everyday use. We demonstrate a textile computer capable of input-driven digital logic for controlling untethered wearable robots that assist users with functional limitations. Our logic platform will facilitate the emergence of future wearables powered by embedded fluidic logic that fully leverage the innate advantages of their textile construction.more » « less
An official website of the United States government

