skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: (In)equality distance patterns and embeddability into Hilbert spaces
We show that compact Riemannian manifolds, regarded as metric spaces with their global geodesic distance, cannot contain a number of rigid structures such as (a) arbitrarily large regular simplices or (b) arbitrarily long sequences of points equidistant from pairs of points preceding them in the sequence. All of this provides evidence that Riemannian metric spaces admit what we term loose embeddings into finite-dimensional Euclidean spaces: continuous maps that preserve both equality as well as inequality. We also prove a local-to-global principle for Riemannian-metric-space loose embeddability: if every finite subspace thereof is loosely embeddable into a common R^N , then the metric space as a whole is loosely embeddable into R^N in a weakened sense.  more » « less
Award ID(s):
2001128
PAR ID:
10337061
Author(s) / Creator(s):
Date Published:
Journal Name:
Palestine journal of mathematics
Volume:
11
Issue:
4
ISSN:
2219-5688
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. By seeing whether a Liouville type theorem holds for positive, bounded, and/or finite \(p\)-energy \(p\)-harmonic and \(p\)-quasiharmonic functions, we classify proper metric spaces equipped with a locally doubling measure supporting a local \(p\)-Poincaré inequality. Similar classifications have earlier been obtained for Riemann surfaces and Riemannian manifolds. We study the inclusions between these classes of metric measure spaces, and their relationship to the \(p\)-hyperbolicity of the metric space and its ends. In particular, we characterize spaces that carry nonconstant \(p\)-harmonic functions with finite \(p\)-energy as spaces having at least two well-separated \(p\)-hyperbolic sequences of sets towards infinity. We also show that every such space \(X\) has a function \(f \notin L^p(X) + \mathbf{R}\) with finite \(p\)-energy. 
    more » « less
  2. Abstract Stochastic embeddings of finite metric spaces into graph-theoretic trees have proven to be a vital tool for constructing approximation algorithms in theoretical computer science. In the present work, we build out some of the basic theory of stochastic embeddings in the infinite setting with an aim toward applications to Lipschitz free space theory. We prove that proper metric spaces stochastically embedding into$$\mathbb {R}$$-trees have Lipschitz free spaces isomorphic to$$L^1$$-spaces. We then undergo a systematic study of stochastic embeddability of Gromov hyperbolic metric spaces into$$\mathbb {R}$$-trees by way of stochastic embeddability of their boundaries into ultrametric spaces. The following are obtained as our main results: (1) every snowflake of a compact, finite Nagata-dimensional metric space stochastically embeds into an ultrametric space and has Lipschitz free space isomorphic to$$\ell ^1$$, (2) the Lipschitz free space over hyperbolicn-space is isomorphic to the Lipschitz free space over Euclideann-space and (3) every infinite, finitely generated hyperbolic group stochastically embeds into an$$\mathbb {R}$$-tree, has Lipschitz free space isomorphic to$$\ell ^1$$, and admits a proper, uniformly Lipschitz affine action on$$\ell ^1$$. 
    more » « less
  3. We propose a method to analyze the three-dimensional nonholonomic system known as the Brockett integrator and to derive the (energy) optimal trajectories between two given points. For systems with nonholonomic constraint, it is well-known that the energy optimal trajectories corresponds to sub-Riemannian geodesics under a proper sub-Riemannian metric. Our method uses symmetry reduction and an analysis of the quotient space associated with the action of a (symmetry) group on R^3. By lifting the Riemannian geodesics with respect to an appropriate metric from the quotient space back to the original space R^3, we derive the optimal trajectories of the original problem. 
    more » « less
  4. Mulzer, Wolfgang; Phillips, Jeff M (Ed.)
    Metric spaces (X, d) are ubiquitous objects in mathematics and computer science that allow for capturing pairwise distance relationships d(x, y) between points x, y ∈ X. Because of this, it is natural to ask what useful generalizations there are of metric spaces for capturing "k-wise distance relationships" d(x_1, …, x_k) among points x_1, …, x_k ∈ X for k > 2. To that end, Gähler (Math. Nachr., 1963) (and perhaps others even earlier) defined k-metric spaces, which generalize metric spaces, and most notably generalize the triangle inequality d(x₁, x₂) ≤ d(x₁, y) + d(y, x₂) to the "simplex inequality" d(x_1, …, x_k) ≤ ∑_{i=1}^k d(x_1, …, x_{i-1}, y, x_{i+1}, …, x_k). (The definition holds for any fixed k ≥ 2, and a 2-metric space is just a (standard) metric space.) In this work, we introduce strong k-metric spaces, k-metric spaces that satisfy a topological condition stronger than the simplex inequality, which makes them "behave nicely." We also introduce coboundary k-metrics, which generalize 𝓁_p metrics (and in fact all finite metric spaces induced by norms) and minimum bounding chain k-metrics, which generalize shortest path metrics (and capture all strong k-metrics). Using these definitions, we prove analogs of a number of fundamental results about embedding finite metric spaces including Fréchet embedding (isometric embedding into 𝓁_∞) and isometric embedding of all tree metrics into 𝓁₁. We also study relationships between families of (strong) k-metrics, and show that natural quantities, like simplex volume, are strong k-metrics. 
    more » « less
  5. Abstract We study properties of twisted unions of metric spaces introduced in [Johnson, Lindenstrauss, and Schechtman 1986], and in [Naor and Rabani 2017]. In particular, we prove that under certain natural mild assumptions twisted unions of L 1 -embeddable metric spaces also embed in L 1 with distortions bounded above by constants that do not depend on the metric spaces themselves, or on their size, but only on certain general parameters. This answers a question stated in [Naor 2015] and in [Naor and Rabani 2017]. In the second part of the paper we give new simple examples of metric spaces such that their every embedding into L p , 1 ≤ p < ∞, has distortion at least 3, but which are a union of two subsets, each isometrically embeddable in L p . This extends the result of [K. Makarychev and Y. Makarychev 2016] from Hilbert spaces to L p -spaces, 1 ≤ p < ∞. 
    more » « less