Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            null (Ed.)Abstract The elliptic algebras in the title are connected graded $$\mathbb {C}$$ -algebras, denoted $$Q_{n,k}(E,\tau )$$ , depending on a pair of relatively prime integers $$n>k\ge 1$$ , an elliptic curve E and a point $$\tau \in E$$ . This paper examines a canonical homomorphism from $$Q_{n,k}(E,\tau )$$ to the twisted homogeneous coordinate ring $$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$$ on the characteristic variety $$X_{n/k}$$ for $$Q_{n,k}(E,\tau )$$ . When $$X_{n/k}$$ is isomorphic to $E^g$ or the symmetric power $S^gE$ , we show that the homomorphism $$Q_{n,k}(E,\tau ) \to B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$$ is surjective, the relations for $$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$$ are generated in degrees $$\le 3$$ and the noncommutative scheme $$\mathrm {Proj}_{nc}(Q_{n,k}(E,\tau ))$$ has a closed subvariety that is isomorphic to $E^g$ or $S^gE$ , respectively. When $$X_{n/k}=E^g$$ and $$\tau =0$$ , the results about $$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$$ show that the morphism $$\Phi _{|\mathcal {L}_{n/k}|}:E^g \to \mathbb {P}^{n-1}$$ embeds $E^g$ as a projectively normal subvariety that is a scheme-theoretic intersection of quadric and cubic hypersurfaces.more » « less
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            An extended derivation (endomorphism) of a (restricted) Lie algebra is an assignment of a derivation (respectively) of for any (restricted) Lie morphism , functorial in in the obvious sense. We show that (a) the only extended endomorphisms of a restricted Lie algebra are the two obvious ones, assigning either the identity or the zero map of to every ; and (b) if is a Lie algebra in characteristic zero or a restricted Lie algebra in positive characteristic, then is in canonical bijection with its space of extended derivations (so the latter are all, in a sense, inner). These results answer a number of questions of G. Bergman. In a similar vein, we show that the individual components of an extended endomorphism of a compact connected group are either all trivial or all inner automorphisms.more » « less
- 
            We prove a number of results having to do with equipping type-I\mathrm{C}^*-algebras with compact quantum group structures, the two main ones being that such a compact quantum group is necessarily co-amenable, and that if the\mathrm{C}^*-algebra in question is an extension of a non-zero finite direct sum of elementary\mathrm{C}^*-algebras by a commutative unital\mathrm{C}^*-algebra then it must be finite-dimensional.more » « less
- 
            We prove a number of results on the survival of the type-I property under extensions of locally compact groups: (a) that given a closed normal embedding of locally compact groups and a twisted action thereof on a (post)liminal -algebra the twisted crossed product is again (post)liminal and (b) a number of converses to the effect that under various conditions a normal, closed, cocompact subgroup is type-I as soon as is. This happens for instance if is discrete and is Lie, or if is finitely-generated discrete (with no further restrictions except cocompactness). Examples show that there is not much scope for dropping these conditions. In the same spirit, call a locally compact group type-I-preserving if all semidirect products are type-I as soon as is, andlinearlytype-I-preserving if the same conclusion holds for semidirect products arising from finite-dimensional -representations. We characterize the (linearly) type-I-preserving groups that are (1) discrete-by-compact-Lie, (2) nilpotent, or (3) solvable Lie.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available