skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A characteristic-index inequality for closed embeddings of locally compact groups
The characteristic index of a locally compact connected group G is the non- negative integer d for which we have a homeomorphism G ~= K × R d with K maximal compact in G . We prove that the characteristic indices of closed connected subgroups are dominated by those of the ambient groups.  more » « less
Award ID(s):
2001128
PAR ID:
10337063
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Lie Theory
ISSN:
0949-5932
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Let G G be a connected, linear, real reductive Lie group with compact centre. Let K > G K>G be compact. Under a condition on K K , which holds in particular if K K is maximal compact, we give a geometric expression for the multiplicities of the K K -types of any tempered representation (in fact, any standard representation) π \pi of G G . This expression is in the spirit of Kirillov’s orbit method and the quantisation commutes with reduction principle. It is based on the geometric realisation of π | K \pi |_K obtained in an earlier paper. This expression was obtained for the discrete series by Paradan, and for tempered representations with regular parameters by Duflo and Vergne. We obtain consequences for the support of the multiplicity function, and a criterion for multiplicity-free restrictions that applies to general admissible representations. As examples, we show that admissible representations of SU ( p , 1 ) \textrm {SU}(p,1) , SO 0 ( p , 1 ) \textrm {SO}_0(p,1) , and SO 0 ( 2 , 2 ) \textrm {SO}_0(2,2) restrict multiplicity freely to maximal compact subgroups. 
    more » « less
  2. null (Ed.)
    The distance matrix $$\mathcal{D}(G)$$ of a graph $$G$$ is the matrix containing the pairwise distances between vertices, and the distance Laplacian matrix is $$\mathcal{D}^L (G)=T(G)-\mathcal{D} (G)$$, where $T(G)$ is the diagonal matrix of row sums of $$\mathcal{D}(G)$$. Several general methods are established for producing $$\mathcal{D}^L$$-cospectral graphs that can be used to construct infinite families. Examples are provided to show that various properties are not preserved by $$\mathcal{D}^L$$-cospectrality, including examples of $$\mathcal{D}^L$$-cospectral strongly regular and circulant graphs. It is established that the absolute values of coefficients of the distance Laplacian characteristic polynomial are decreasing, i.e., $$|\delta^L_{1}|\geq \cdots \geq |\delta^L_{n}|$$, where $$\delta^L_{k}$$ is the coefficient of $x^k$. 
    more » « less
  3. Abstract For any compact connected one-dimensional submanifold $$K\subset \mathbb R^{2\times 2}$$ without boundary that has no rank-one connection and is elliptic, we prove the quantitative rigidity estimate $$\begin{align*} \inf_{M\in K}\int_{B_{1/2}}| Du -M |^2\, \textrm{d}x \leq C \int_{B_1} \operatorname{dist}^2(Du, K)\, \textrm{d}x, \qquad\forall u\in H^1(B_1;\mathbb R^2). \end{align*}$$This is an optimal generalization, for compact connected submanifolds of $$\mathbb R^{2\times 2}$$ without boundary, of the celebrated quantitative rigidity estimate of Friesecke, James, and Müller for the approximate differential inclusion into $SO(n)$. The proof relies on the special properties of elliptic subsets $$K\subset{{\mathbb{R}}}^{2\times 2}$$ with respect to conformal–anticonformal decomposition, which provide a quasilinear elliptic partial differential equation satisfied by solutions of the exact differential inclusion $$Du\in K$$. We also give an example showing that no analogous result can hold true in $$\mathbb R^{n\times n}$$ for $$n\geq 3$$. 
    more » « less
  4. We study the nonlinear $$\sigma$$-model in $${(d+1)}$$-dimensional spacetime with connected target space $$K$$ and show that, at energy scales below singular field comfigurations (such as vortices), it has an emergent non-invertible higher symmetry. The symmetry defects of the emergent symmetry are described by the $$d$$-representations of a discrete $$d$$-group $$\mathbb{G}^{(d)}$$ (i.e. the emergent symmetry is the dual of the invertible $$d$$-group $$\mathbb{G}^{(d)}$$ symmetry). The $$d$$-group $$\mathbb{G}^{(d)}$$ is determined such that its classifying space $$B\mathbb{G}^{(d)}$$ is given by the $$d$$-th Postnikov stage of $$K$$. In $(2+1)$D and for finite $$\mathbb{G}^{(2)}$$, this symmetry is always holo-equivalent to an invertible $${0}$$-form---ordinary---symmetry with potential 't Hooft anomaly. The singularity-free disordered phase of the nonlinear $$\sigma$$-model spontaneously breaks this symmetry, and when $$\mathbb{G}^{(d)}$$ is finite, it is described by the deconfined phase of $$\mathbb{G}^{(d)}$$ higher gauge theory. We consider examples of such disordered phases. We focus on a singularity-free $S^2$ nonlinear $$\sigma$$-model in $${(3+1)}$$D and show that it has an emergent non-invertible higher symmetry. As a result, its disordered phase is described by axion electrodynamics and has two gapless modes corresponding to a photon and a massless axion. Notably, this non-perturbative result is different from the results obtained using the $S^N$ and $$\mathbb{C}P^{N-1}$$ nonlinear $$\si$$-models in the large-$$N$$ limit. 
    more » « less
  5. null (Ed.)
    Abstract The elliptic algebras in the title are connected graded $$\mathbb {C}$$ -algebras, denoted $$Q_{n,k}(E,\tau )$$ , depending on a pair of relatively prime integers $$n>k\ge 1$$ , an elliptic curve E and a point $$\tau \in E$$ . This paper examines a canonical homomorphism from $$Q_{n,k}(E,\tau )$$ to the twisted homogeneous coordinate ring $$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$$ on the characteristic variety $$X_{n/k}$$ for $$Q_{n,k}(E,\tau )$$ . When $$X_{n/k}$$ is isomorphic to $E^g$ or the symmetric power $S^gE$ , we show that the homomorphism $$Q_{n,k}(E,\tau ) \to B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$$ is surjective, the relations for $$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$$ are generated in degrees $$\le 3$$ and the noncommutative scheme $$\mathrm {Proj}_{nc}(Q_{n,k}(E,\tau ))$$ has a closed subvariety that is isomorphic to $E^g$ or $S^gE$ , respectively. When $$X_{n/k}=E^g$$ and $$\tau =0$$ , the results about $$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$$ show that the morphism $$\Phi _{|\mathcal {L}_{n/k}|}:E^g \to \mathbb {P}^{n-1}$$ embeds $E^g$ as a projectively normal subvariety that is a scheme-theoretic intersection of quadric and cubic hypersurfaces. 
    more » « less