skip to main content


Title: Quantitative Spectroscopic Analysis of Water Populations in the Hydrated Nanopore Environments of a Natural Montmorillonite
Smectite clays are implicated in solute trapping in natural and engineered processes. Here we evaluated 23Na solid-state nuclear magnetic resonance (NMR) and thermogravimetric analysis-coupled mass spectrometry (TGA–MS) for quantitative analysis of a hydrated natural Na-montmorillonite equilibrated at different relative humidity (RH). Using X-ray diffraction, we determined predominantly large-sized (∼1.55 nm) interlayers at 93% and 75% RH, 2:1 ratio of medium-sized (∼1.23 nm) to large-sized interlayers at 55% RH, and 2:1 ratio of small-sized (<0.96 nm) to medium-sized interlayers at 11% RH. Informed by simulated NMR of differently hydrated model Na-MONT systems, the experimental 23Na NMR data revealed only fully hydrated Na+ populations at 93% RH, a 2:1 ratio of partially hydrated (outer-sphere) to mineral-bound (inner-sphere) Na+ populations at 55% RH and, remarkably, a near-equal proportion of these latter two Na+ populations at 11% RH. Between 93% and 11% RH, the TGA–MS data captured a 57% increase in tightly bound waters (water loss at 100–300 °C) but only a 22% decrease in freely exchangeable waters (water loss below 40 °C). The addition of exogenous NaCl altered the aforementioned hydration behaviors, particularly at low RH. Our findings of persisting hydrated environments despite interlayer collapse implied water populations incongruent with predictions from smectite interlayer nanopore size distributions.  more » « less
Award ID(s):
1646815
NSF-PAR ID:
10337137
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of physical chemistry
Volume:
125
Issue:
48
ISSN:
1932-7455
Page Range / eLocation ID:
26552-26565
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Borates and borosilicates are potential candidates for the design and development of glass formulations with important industrial and technological applications. A major challenge that retards the pace of development of borate/borosilicate based glasses using predictive modeling is the lack of reliable computational models to predict the structure‐property relationships in these glasses over a wide compositional space. A major hindrance in this pursuit has been the complexity of boron‐oxygen bonding due to which it has been difficult to develop adequate B–O interatomic potentials. In this article, we have evaluated the performance of three B–O interatomic potential models recently developed by Bauchy et al [J.Non‐Cryst. Solids, 2018, 498, 294–304], Du et al [J. Am. Ceram. Soc.https://doi.org/10.1111/jace.16082] and Edèn et al [Phys. Chem. Chem. Phys., 2018, 20, 8192–8209] aiming to reproduce the short‐to‐medium range structures of sodium borosilicate glasses in the system 25 Na2OxB2O3(75 − x) SiO2(x = 0‐75 mol%). To evaluate the different force fields, we have computed at the density functional theory level the NMR parameters of11B,23Na, and29Si of the models generated with the three potentials and the simulated MAS NMR spectra compared with the experimental counterparts. It was observed that the rigid ionic models proposed by Bauchy and Du can both reliably reproduce the partitioning between BO3and BO4species of the investigated glasses, along with the local environment around sodium in the glass structure. However, they do not accurately reproduce the second coordination sphere of silicon ions and the Si–O–T (T = Si, B) and B‐O‐T distribution angles in the investigated compositional space which strongly affect the NMR parameters and final spectral shape. On the other hand, the core‐shell parameterization model proposed by Edén underestimates the fraction of BO4species of the glass with composition 25Na2O 18.4B2O356.6SiO2but can accurately reproduce the shape of the11B and29Si MAS‐NMR spectra of the glasses investigations due to the narrower B–O–T and Si‐O‐T bond angle distributions. Finally, the effect of the number of boron atoms (also distinguishing the BO3and BO4units) in the second coordination sphere of the network former cations on the NMR parameters have been evaluated.

     
    more » « less
  2. Abstract

    A multistep deposition technique is developed to produce highly oriented diamond films by hot filament chemical vapor deposition (HFCVD) on Si (111) substrates. The orientation is produced by use of a thin, 5–20 nm, Ni interlayer. Annealing studies demonstrate diffusion of Ni into Si to form nickel silicides with crystal structure depending on temperature. The HFCVD diamond film with Ni interlayer results in reduced non-diamond carbon, low surface roughness, high diamond crystal quality, and increased texturing relative to growth on bare silicon wafers. X-ray diffraction results show that the diamond film grown with 10 nm Ni interlayer yielded 92.5% of the diamond grains oriented along the (110) crystal planes with ~ 2.5 µm thickness and large average grain size ~ 1.45 µm based on scanning electron microscopy. Texture is also observed to develop for ~ 300 nm thick diamond films with ~ 89.0% of the grains oriented along the (110) crystal plane direction. These results are significantly better than diamond grown on Si (111) without Ni layer with the same HFCVD conditions. The oriented growth of diamond film on Ni interlayers is explained by a proposed model wherein the nano-diamond seeds becoming oriented relative to the β1-Ni3Si that forms during the diamond nucleation period. The model also explains the silicidation and diamond growth processes.

    Article Highlights

    High quality diamond film with minimum surface roughness and ~93% oriented grains along (110) crystallographic direction is grown on Si substrate using a thin 5 to 20 nm nickel layer.

    A detailed report on the formation of different phases of nickel silicide, its stability with different temperature, and its role for diamond film texturing at HFCVD growth condition is presented.

    A diamond growth model on Si substrate with Ni interlayer to grow high quality-oriented diamond film is established.

     
    more » « less
  3. Sanitary sewer overflows (SSOs) are a common problem across the United States. An estimated number of 23 000–75 000 SSOs occurred in 2004, discharging between 11 and 38 billion liters of untreated wastewater to receiving waters. SSOs release many contaminants, including engineered nanomaterials (ENMs), to receiving water bodies. Measuring ENM concentrations in environmental samples remains a key challenge in environmental nanotechnology and requires the distinction between natural and engineered particles. This distinction between natural and engineered particles is often hampered by the similarities in the intrinsic properties of natural and engineered particles, such as particle size, composition, density, and surface chemistry, and by the limitations of the available nanometrology tools. To overcome these challenges, we applied a multi-method approach to measure the concentrations and properties of TiO 2 engineered particles ( e.g. , ENMs and pigments) including: 1) multi element-single particle-inductively coupled plasma-mass spectrometry (ME-SP-ICP-MS) to identify elemental associations and to determine elemental ratios in natural particles, 2) calculation of total elemental concentrations and ratios from total metal concentrations measured following total sample digestion to estimate engineered particle concentrations, and 3) transmission electron microscopy (TEM) to characterize engineered particle size and morphology. ME-SP-ICP-MS analysis revealed that natural TiO 2 particles are often associated with at least one of the following elements: Al, Fe, Ce, Si, La, Zr, Nb, Pb, Ba, Th, Ta, W and U, and that elemental ratios of Ti to these elements, except Pb, are typical of riverine particulates and the average crustal ratios. High TiO 2 engineered particle concentrations up to 100 μg L −1 were found in SSO-impacted surface waters. TEM analysis demonstrated the presence of regular-shape TiO 2 particles in SSO-impacted surface waters. This study provides a comprehensive approach for measuring TiO 2 engineered particle concentrations in surface waters. The quantitative data produced in this work can be used as input for modeling studies and pave the way for routine monitoring of ENMs in environmental systems, validation of ENM fate models, and more accurate ENM exposure and risk assessment. 
    more » « less
  4. null (Ed.)
    Engineered nanoparticle (NP) size and natural organic matter (NOM) composition play important roles in determining NP environmental behaviors. The aim of this work was to investigate how NP size and NOM composition influence the colloidal stability of polyvinylpyrrolidone coated platinum engineered nanoparticles (PVP-PtNPs). We evaluated PVP-PtNP aggregation as a function of the NP size (20, 30, 50, 75, and 95 nm, denoted as PVP-PtNP 20–95 ) in moderately hard water (MHW). Further, we quantified the effect of the hydrophobic organic acid (HPOA) fraction of NOM on the aggregation of PVP-PtNP 20 and PVP-PtNP 95 using 6 NOM samples from various surface waters, representing a range of NOM compositions and properties. NOM samples were characterized for bulk elemental composition ( e.g. , C, H, O, N, and S), specific ultraviolet absorbance at 254 nm (SUVA 254 ), and molecular level composition ( e.g. , compound classes) using ultrahigh resolution mass spectrometry. Single particle-inductively coupled plasma-mass spectrometry (sp-ICP-MS) was employed to monitor the aggregation of PVP-PtNPs at 1 μg PVP-PtNP per L and 1 mg NOM per L concentrations. PVP-PtNP aggregate size increased with decreasing primary PVP-PtNP size, likely due to the lower zeta potential, the higher number concentration, and the higher specific surface area of smaller NPs compared to larger NPs at the same mass concentration. No aggregation was observed for PVP-PtNP 95 in MHW in the presence and absence of the different NOM samples. PVP-PtNP 20 formed aggregates in MHW in the presence and absence of the six NOM samples, and aggregate size increased in the presence of NOM likely due to interparticle bridging of NOM-coated PVP-PtNPs by divalent counterions. PVP-PtNP 20 aggregate size increased with the increase in NOM elemental ratio of H to C and the relative abundance of lignin-like/carboxyl rich-alicyclic molecules (CRAM)-like compounds. However, the aggregate size of PVP-PtNP 20 decreased with the increase in NOM molecular weight, NOM SUVA 254 , elemental ratio of O to C, and the relative abundance of condensed hydrocarbons and tannin-like compounds. Overall, the results of this study suggest that the composition and sources of NOM are key factors that contribute to the stability of PVP-PtNPs in the aquatic environment. 
    more » « less
  5. Abstract

    Ticks are vectors of many diseases and are expanding in geographic distribution. However, how ticks will fare in their new environments, where they may experience stressful climatic conditions at the expansion front, remains unclear. Since there is a trade‐off in ticks between behaviors that promote longevity and behaviors that promote reproduction, we hypothesized that extreme climatic stress reduces the survivorship of ticks but increases the frequency of tick host‐seeking behavior, or questing. Here, we used a novel method to simulate climatic stress on individual ticks of three species—Amblyomma americanum,Dermacentor variabilis, andIxodes scapularis—to evaluate their survival, physiology, and questing behavior. The first experiment involved placing 144 adult ticks of each species in two temperature ranges (15–25°C and 25–35°C) and three relative humidity (RH) treatments (32%, 58%, and 84% RH). We assessed the ticks daily for survivorship and questing, and we measured water loss by comparing the mass of each tick when it died to when it was fully hydrated. In this first experiment, ticks in warmer and less humid conditions generally died faster than those in cooler and more humid conditions. Ticks of all three species were more likely to quest shortly before their death and consistently died after losing approximately 50%–56% of their total body water content, butIxodesreached that threshold much faster than the other two species. The second experiment involved placing 18 ticks of each species at 35°C and 32% RH. We assessed the ticks every 3 h for survivorship, questing, and water loss. Ticks again were more likely to quest shortly before their death. With frequent checks, we were able to measure the dehydration tolerance more accurately and the rate of water loss. Ticks of all three species consistently died after losing approximately 51% of their total body water content. However,Ixodeslost water approximately 5 times faster thanAmblyommaand 11 times faster thanDermacentor. These results demonstrate that severe climatic stress tilts the trade‐off toward higher questing rates but not higher overall questing time because of reduced survival rates.

     
    more » « less