skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New insights into the mechanisms of carbon dioxide mineralization by portlandite
Abstract Portlandite (Ca(OH)2; also known as calcium hydroxide or hydrated lime), an archetypal alkaline solid, interacts with carbon dioxide (CO2) via a classic acid–base “carbonation” reaction to produce a salt (calcium carbonate: CaCO3) that functions as a low‐carbon cementation agent, and water. Herein, we revisit the effects of reaction temperature, relative humidity (RH), and CO2concentration on the carbonation of portlandite in the form of finely divided particulates and compacted monoliths. Special focus is paid to uncover the influences of the moisture state (i.e., the presence of adsorbed and/or liquid water), moisture content and the surface area‐to‐volume ratio (sa/v, mm−1) of reactants on the extent of carbonation. In general, increasing RH more significantly impacts the rate and thermodynamics of carbonation reactions, leading to high(er) conversion regardless of prior exposure history. This mitigated the effects (if any) of allegedly denser, less porous carbonate surface layers formed at lower RH. In monolithic compacts, microstructural (i.e., mass‐transfer) constraints particularly hindered the progress of carbonation due to pore blocking by liquid water in compacts with limited surface area to volume ratios. These mechanistic insights into portlandite's carbonation inform processing routes for the production of cementation agents that seek to utilize CO2borne in dilute (≤30 mol%) post‐combustion flue gas streams.  more » « less
Award ID(s):
1922167
PAR ID:
10452740
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AIChE Journal
Volume:
67
Issue:
5
ISSN:
0001-1541
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The mineral carbon sequestration capacity of basic oxygen furnace (BOF) slag offers great potential to absorb carbon dioxide (CO2) from landfill emissions. The BOF slag is highly alkaline and rich in calcium (Ca) containing minerals that can react with the CO2to form stable carbonates. This property of BOF slag makes it appealing for use in CO2sequestration from landfill gas. In a previous study, CO2and CH4removal from the landfill gas was investigated by performing batch and column experiments with BOF slag under different moisture and synthetic landfill gas exposure conditions. The study showed two stage CO2removal mechanism: (1) initial rapid CO2removal, which was attributed to the carbonation of free lime (CaO) and portlandite [(Ca(OH)2)], and (2) long-term relatively slower CO2removal, which was attributed to be the gradual leaching of Ca2+from minerals (calcium-silicates) present in the BOF slag. Realising that the particle size could be an important factor affecting total CO2sequestration capacity, this study investigates the effect of gradation on the CO2sequestration capacity of the BOF slag under simulated landfill gas conditions. Batch and column experiments were performed with BOF slag using three gradations: (1) coarse (D50 = 3.05 mm), (2) original (D50 = 0.47 mm), and (3) fine (D50 = 0.094 mm). The respective CO2sequestration potentials attained were 255 mg g−1, 155 mg g−1, and 66 mg g−1. The highest CO2sequestration capacity of fine BOF slag was attributed to the availability of calcium containing minerals on the slag particle surface owing to the highest surface area and shortest leaching path for the Ca2+from the inner core of the slag particles. 
    more » « less
  2. It is significant to investigate the calcium carbonate (CaCO3) precipitation mechanism during the carbon capture process; nevertheless, CaCO3 precipitation is not clearly understood yet. Understanding the carbonation mechanism at the atomic level can contribute to the mineralization capture and utilization of carbon dioxide, as well as the development of new cementitious materials with high-performance. There are many factors, such as temperature and CO2 concentration, that can influence the carbonation reaction. In order to achieve better carbonation efficiency, the reaction conditions of carbonation should be fully verified. Therefore, based on molecular dynamics simulations, this paper investigates the atomic-scale mechanism of carbonation. We investigate the effect of carbonation factors, including temperature and concentration, on the kinetics of carbonation (polymerization rate and activation energy), the early nucleation of calcium carbonate, etc. Then, we analyze the local stresses of atoms to reveal the driving force of early stage carbonate nucleation and the reasons for the evolution of polymerization rate and activation energy. Results show that the higher the calcium concentration or temperature, the higher the polymerization rate of calcium carbonate. In addition, the activation energies of the carbonation reaction increase with the decrease in calcium concentrations. 
    more » « less
  3. Abstract Drylands occupy nearly 40% of the land surface and comprise a globally significant carbon reservoir. Dryland‐atmosphere carbon exchange may regulate interannual variability in atmospheric CO2. Quantifying soil respiration rates in these environments is often complicated by the presence of calcium carbonates, which are a common feature of dryland soils. We show with high‐precision O2measurements in a laboratory potted soil experiment that respiration rates after watering were similar in control and carbonate treatment soils. However, CO2concentrations were up to 72% lower in the carbonate treatment soil because CO2was initially consumed during calcite dissolution. Subsequently, CO2concentrations were over 166% greater in the carbonate treatment soil as respiration slowed and calcite precipitated, releasing CO2. Elevated δ13C values of soil CO2(>6‰ higher in the treatment than control) confirm that observed differences were due to calcite dissolution. These findings demonstrate that calcite dissolution and precipitation can occur rapidly enough to affect soil gas compositions and that changes in soil CO2are not always directly related to changes in soil respiration rates. Studies of local soil respiration rates and carbon exchange are likely to be influenced by dissolution and precipitation of calcium carbonates in soils. We estimate that one fifth of global soil respiration occurs in soils that contain some amount of soil carbonate, underscoring the need to account for its obscuring effects when trying to quantify soil respiration and net ecosystem exchange on a regional or global scale. 
    more » « less
  4. Kelemen, Peter (Ed.)
    Most of the geologic CO2entering Earth’s atmosphere and oceans is emitted along plate margins. While C-cycling at mid-ocean ridges and subduction zones has been studied for decades, little attention has been paid to degassing of magmatic CO2and mineral carbonation of mantle rocks in oceanic transform faults. We studied the formation of soapstone (magnesite–talc rock) and other magnesite-bearing assemblages during mineral carbonation of mantle peridotite in the St. Paul’s transform fault, equatorial Atlantic. Clumped carbonate thermometry of soapstone yields a formation (or equilibration) temperature of 147 ± 13 °C which, based on thermodynamic constraints, suggests that CO2(aq)concentrations of the hydrothermal fluid were at least an order of magnitude higher than in seawater. The association of magnesite with apatite in veins, magnesite with a δ13C of −3.40 ± 0.04‰, and the enrichment of CO2in hydrothermal fluids point to magmatic degassing and melt-impregnation as the main source of CO2. Melt-rock interaction related to gas-rich alkali olivine basalt volcanism near the St. Paul’s Rocks archipelago is manifested in systematic changes in peridotite compositions, notably a strong enrichment in incompatible elements with decreasing MgO/SiO2. These findings reveal a previously undocumented aspect of the geologic carbon cycle in one of the largest oceanic transform faults: Fueled by magmatism in or below the root zone of the transform fault and subsequent degassing, the fault constitutes a conduit for CO2-rich hydrothermal fluids, while carbonation of peridotite represents a vast sink for the emitted CO2
    more » « less
  5. Abstract We use geochemical and petrographic data from anoxic sequences of the Nicobar Fan to document extensive marine silicate weathering (MSiW) in the input sediment of the Sumatra subduction zone and the conditions that result in authigenic minerals originating from this reaction: precipitation of authigenic carbonate—which sequesters carbon—and formation of authigenic clay—which releases CO2. Increase in87Sr/86Sr in pore fluids from International Ocean Discovery Program Expedition 362 (Site U1480 to 0.71376 and Site U1481 to 0.71296) reveals a radiogenic strontium contribution from alteration of the Himalayan continental sediment that dominates the Nicobar Fan. Peaks in the dissolved strontium isotope data coincide with zones of methane presence, consistent with MSiW reactions driven by CO2generation during methanogenesis. Later‐stage fan sequences from 24 to 400 mbsf (meters below seafloor) contain only minor carbonate with87Sr/86Sr ratios that deviate only slightly from the co‐eval seawater values (0.70920–0.70930); geochemical data in this zone point to a contribution of authigenic clay formation. In contrast, microscopy and elemental mapping of the carbonate‐cemented zones in the earliest fan deposits (>780 mbsf) show replacement of feldspars and dense minerals by carbonate, which ranges in volume from a few percent of the grain to near total grain obliteration. This deeper authigenic carbonate is significantly enriched in radiogenic87Sr (0.71136–0.71328). Thus, MSiW leads to distinct products, likely in response to a weathering‐derived supply of silica in the younger setting versus calcium enrichment via diffusion from oceanic basement in the older sequence. 
    more » « less