Contrastive learning is a self-supervised representation learning method that achieves milestone performance in various classification tasks. However, due to its unsupervised fashion, it suffers from the false negative sample problem: randomly drawn negative samples that are assumed to have a different label but actually have the same label as the anchor. This deteriorates the performance of contrastive learning as it contradicts the motivation of contrasting semantically similar and dissimilar pairs. This raised the attention and the importance of finding legitimate negative samples, which should be addressed by distinguishing between 1) true vs. false negatives; 2) easy vs. hard negatives. However, previous works were limited to the statistical approach to handle false negative and hard negative samples with hyperparameters tuning. In this paper, we go beyond the statistical approach and explore the connection between hard negative samples and data bias. We introduce a novel debiased contrastive learning method to explore hard negatives by relative difficulty referencing the bias-amplifying counterpart. We propose triplet loss for training a biased encoder that focuses more on easy negative samples. We theoretically show that the triplet loss amplifies the bias in self-supervised representation learning. Finally, we empirically show the proposed method improves downstream classification performance.
more »
« less
Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup
Contrastive learning has been applied successfully to learn vector representations of text. Previous research demonstrated that learning high-quality representations benefits from batch-wise contrastive loss with a large number of negatives. In practice, the technique of in-batch negative is used, where for each example in a batch, other batch examples’ positives will be taken as its negatives, avoiding encoding extra negatives. This, however, still conditions each example’s loss on all batch examples and requires fitting the entire large batch into GPU memory. This paper introduces a gradient caching technique that decouples backpropagation between contrastive loss and the encoder, removing encoder backward pass data dependency along the batch dimension. As a result, gradients can be computed for one subset of the batch at a time, leading to almost constant memory usage.
more »
« less
- Award ID(s):
- 1815528
- PAR ID:
- 10337217
- Date Published:
- Journal Name:
- Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021)
- Page Range / eLocation ID:
- 316 to 321
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Self-supervised learning through contrastive representations is an emergent and promising avenue, aiming at alleviating the availability of labeled data. Recent research in the field also demonstrates its viability for several downstream tasks, henceforth leading to works that implement the contrastive principle through inno- vative loss functions and methods. However, despite achieving impressive progress, most methods depend on prohibitively large batch sizes and compute requirements for good performance. In this work, we propose the AUC-Contrastive Learning, a new approach to contrastive learning that demonstrates robust and competitive performance in compute-limited regimes. We propose to incorporate the contrastive objective within the AUC-maximization framework, by noting that the AUC metric is maximized upon enhancing the probability of the network’s binary prediction difference between positive and negative samples which inspires adequate embed- ding space arrangements in representation learning. Unlike standard contrastive methods, when performing stochastic optimization, our method maintains unbiased stochastic gradients and thus is more robust to batchsizes as opposed to standard stochastic optimization problems. Remarkably, our method with a batch size of 256, outperforms several state-of-the-art methods that may need much larger batch sizes (e.g., 4096), on ImageNet and other standard datasets. Experiments on transfer learning and few-shot learning tasks also demonstrate the downstream viability of our method. Code is available at AUC-CL.more » « less
-
Standard contrastive learning approaches usually require a large number of negatives for effective unsupervised learning and often exhibit slow convergence. We suspect this behavior is due to the suboptimal selection of negatives used for offering contrast to the positives. We counter this difficulty by taking inspiration from support vector machines (SVMs) to present max-margin contrastive learning (MMCL). Our approach selects negatives as the sparse support vectors obtained via a quadratic optimization problem, and contrastiveness is enforced by maximizing the decision margin. As SVM optimization can be computationally demanding, especially in an end-to-end setting, we present simplifications that alleviate the computational burden. We validate our approach on standard vision benchmark datasets, demonstrating better performance in unsupervised representation learning over state-of-the-art, while having better empirical convergence properties.more » « less
-
Modern techniques like contrastive learning have been effectively used in many areas, including computer vision, natural language processing, and graph-structured data. Creating positive examples that assist the model in learning robust and discriminative representations is a crucial stage in contrastive learning approaches. Usually, preset human intuition directs the selection of relevant data augmentations. Due to patterns that are easily recognized by humans, this rule of thumb works well in the vision and language domains. However, it is impractical to visually inspect the temporal structures in time series. The diversity of time series augmentations at both the dataset and instance levels makes it difficult to choose meaningful augmentations on the fly. In this study, we address this gap by analyzing time series data augmentation using information theory and summarizing the most commonly adopted augmentations in a unified format. We then propose a contrastive learning framework with parametric augmentation, AutoTCL, which can be adaptively employed to support time series representation learning. The proposed approach is encoder-agnostic, allowing it to be seamlessly integrated with different backbone encoders. Experiments on univariate forecasting tasks demonstrate the highly competitive results of our method, with an average 6.5% reduction in MSE and 4.7% in MAE over the leading baselines. In classification tasks, AutoTCL achieves a 1.2% increase in average accuracy.more » « less
-
Learning sentence representations which capture rich semantic meanings has been crucial for many NLP tasks. Pre-trained language models such as BERT have achieved great success in NLP, but sentence embeddings extracted directly from these models do not perform well without fine-tuning. We propose Contrastive Learning of Sentence Representations (CLSR), a novel approach which applies contrastive learning to learn universal sentence representations on top of pre-trained language models. CLSR utilizes semantic similarity of two sentences to construct positive instance for contrastive learning. Semantic information that has been captured by the pre-trained models is kept by getting sentence embeddings from these models with proper pooling strategy. An encoder followed by a linear projection takes these embeddings as inputs and is trained under a contrastive objective. To evaluate the performance of CLSR, we run experiments on a range of pre-trained language models and their variants on a series of Semantic Contextual Similarity tasks. Results show that CLSR gains significant performance improvements over existing SOTA language models.more » « less
An official website of the United States government

