skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: Introducing and Facilitating Internet of Medical Things (IoMT) Research for Undergraduate Students and High School Teachers
The Internet of Medical Things (IoMT) is a rapidly growing community of intelligent medical technologies dedicated to sensing, monitoring, and reporting patient vitals, often with the intent of communicating findings with healthcare professionals (HCPs). For the past two summers, 2020 and 2021, four undergraduate electrical/computer engineering and computer science students, and two high school STEM teachers, worked with two graduate student mentors to explore various IoMT use cases via their participation in a Research Experiences for Undergraduates (REU) and Teachers (RET) program. During both summers, the REU/RET program was conducted remotely over nine weeks, not including pre-summer engagement activities. These pre-summer activities were designed to promote and encourage healthy mentor-mentee interactions while also providing an additional opportunity for participants to acclimate to their research projects before the program start. Throughout this work, participants were able to gain or further develop skills in some of the following areas: Ethical Hacking, Data Science, Intrusion Detection Systems, Linux, Machine Learning, Networking, and Python, as well as interact with a designated smart device and testing environment. In the first summer, participants were assigned a smart glucose meter and tasked with 1) exploiting the potential threats associated with installing smart devices onto unsecured network configurations via address resolution protocol (ARP) poisoning, and 2) exploring social engineering tactics through cloning the device user application. Additionally, in the following summer, participants became acquainted with an existing IoMT dataset, developing an intrusion detection system (IDS) to accurately distinguish between normal and abnormal network packets due to a deployed Man-in-the-Middle (MitM) attack. The outputs of this work include: both sets of participants preparing verbal presentations, including demonstrations, and written papers outlining their results and experiences. After the project, participants should understand and implement a set of guidelines for utilizing IoMT devices more securely and with added privacy.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
2021 Fall ASEE Middle Atlantic Section Meeting
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Smart City Research Experience for Undergraduates (REU) and Research Experience for Teachers (RET) (SCR2) Mega-Site program, which is supported by the National Science Foundation (NSF) (#1849454), was formed in 2018 to address the low participation and graduation rates of post-secondary students belonging to underrepresented minority groups in the engineering field. The participating schools in the program are all minority serving and members of a consortium consisting of 14 Historically Black Colleges and Universities (HBCUs) and 1 Hispanic Serving Institution (HSI), where Morgan State University (MSU) serves as the lead institution. The program targets lower division underperforming REU students who are less likely to have the opportunity to participate in research as undergraduates. Participation in this type of experience has been demonstrated to be transformative and to have the potential to increase retention and graduation rates at these institutions. RET participants are recruited from local community colleges and high schools that serve as feeder schools to the consortium institutions. These teachers are responsible for preparing students who could potentially be interesting in pursuing a college major in engineering by exposing them to hands-on engineering design practices. Over the last two years of the program’s existence, 61 students and 24 teachers have successfully participated. As with most 2020 summer programs, the SCR2 program was challenged by the novel corona virus (COVID-19) pandemic, which hit the United states during the recruitment period of the project. Consequently, the project leadership team decided to offer the summer program remotely (on-line) rather than bring students to the participating three campuses across which the program is distributed. The planning and execution of the program during a global pandemic has brought key insights into techniques, methods, and technologies for effective cross-site communication, faculty advisor/mentor involvement, participant engagement, and leveraging the strong network that connects the participating schools. Essentially, a multi-site remote only combined REU/RET program is efficacious in increasing participant’s confidence, knowledge and desire to pursue further engineering research experiences. This paper presents these insights along with supporting program evaluation findings. 
    more » « less
  2. In this paper we present an evaluation and lessons learned from a joint Research Experience for Undergraduates (REU) and Research Experience for Teachers (RET) program focused on energy and sustainability topics within a Materials Science and Engineering program at a public university. This program brought eleven undergraduate science and engineering students with diverse educational and institutional backgrounds and four local middle and high school teachers on campus for an 8-week research experience working in established lab groups at the university. Using the Qualtrics online survey software, we conducted pre-experience and post-experience surveys of the participants to assess the effects of participating in this summer research program. At the beginning of the summer, all participants provided their definition of technical research and described what they hoped to get out of their research experience, and the undergraduate students described their future career and educational plans. At the conclusion of the summer, a post-experience survey presented participants’ with their answers from the beginning of the summer and asked them to reflect on how their understanding of research and future plans involving research changed over the course of the summer experience. Many participants evolved a new understanding of research as a result of participating in the summer experience. In particular, they better recognized the collaborative nature of research and the challenges that can arise as part of the process of doing research. Participants acquired both technical and professional skills that they found useful, such as learning new programming languages, becoming proficient at using new pieces of equipment, reviewing technical literature, and improving presentation and communication skills. Undergraduates benefited from developing new relationships with their peers, while the teacher participants benefited from developing relationships with faculty and staff at the university. While most of the participants felt that they were better prepared for future studies or employment, they did not feel like the summer research experience had a significant impact on their future career or degree plans. Finally, while almost all of the participants described their summer research experience as positive, areas for improvement included better planning and access to mentors, as well as more structured activities for the teachers to adapt their research activities for the classroom. 
    more » « less
  3. Funded by the NSF Division of Computer and Network Systems, this grant establishes a new Research Experiences for Teachers (RET) Site at the University of South Alabama (USA). In the summer of 2021, eight middle school and high school teachers from two local public-school districts spent six weeks engaged with research activities on biologically-inspired computing systems. They worked on discovery-based research projects and obtained transdisciplinary research experience on biologically-inspired computing systems spanning application (cancer detection), algorithm (Spiking Neural Networks), architecture and circuit (synaptic memory design), and device (memristor). The USA faculty mentors, curriculum development specialist from school districts, Instructional Coach from Science/Mathematics faculty at USA coached participants as they designed standards-compliant curriculum modules and conducted professional development activities. The implementation details of the summer program and the evaluation results are presented in this paper. 
    more » « less
  4. In this paper we describe a joint Research Experience for Undergraduates (REU) and Research Experience for Teachers (RET) program focused on energy and sustainability topics within a Materials Science and Engineering program at a public university. This program brought ten undergraduate science and engineering students and five local middle and high school teachers on campus for an 8-week research experiences working with different lab groups. Given the relatively small number of participants, we chose qualitative interviews as our primary source of data for assessing the effectiveness of this program. The participants identified numerous positive aspects of participating in the summer research program. Students appreciated the sense of community they developed with both the other participants in the research program and the other members of their lab groups. Although most of the participants did not report the summer research experience as having a strong influence on their decisions to pursue graduate school or careers involving research, they did report both being more confident in their ability to be successful as a researcher and appreciating the opportunity to learn more about the practice of engineering research in an academic setting. For the teachers involved in the program we describe how participation influenced their leadership, perceptions of adoption educational innovations, and willingness to provide more opportunities to engage their students in authentic STEM research. The participants also provided several recommendations for improvement to the summer research program. For the students, these included more materials in advance and a more streamlined onboarding process to allow them to get up to speed on their projects more quickly, consistent access to their supervisors, and work that is intellectually challenging. Suggestion from the teacher participants for improvement mostly involved requests for more guidance on how to incorporate what they were learning in their research into lessons for their classrooms. By describing this program and the successes and challenges encountered by the participants and organizers, we intend to help others considering implementing REU/RET programs or other summer research experiences to design and implement successful programs. 
    more » « less
  5. A new Research Experience for Teachers (RET) site was established in the Department of Civil, Construction, and Environmental Engineering at North Dakota State University (NDSU) with funding from the National Science Foundation Division of Engineering Education and Centers (NSF Award #1953102). The site focused on civil engineering instruction around the theme of mitigating natural disasters for secondary education (6th to 12th grade) teachers. Eight local teachers and one pre-service teacher (who comprised the first cohort) were provided with a six-week long authentic research experience during the summer, which they translated into a hands-on curriculum for their classrooms during the 2021-2022 academic year. Partnerships were developed between the host institution, area teachers and local partners from civil engineering industries. This paper will summarize the lessons learned by the authors as well as the effectiveness of the program activities to accomplish two objectives: (1) provide a deeper understanding of civil engineering and (2) develop better abilities among secondary education teachers to prepare future science, technology, engineering and mathematics (STEM) leaders. Several strengths were identified by the authors as they reflected on the summer activities including the successes in creating strong connections between the teachers, faculty members and graduate students, and the industry partners as well as the agility of the core research team to overcome unexpected challenges. However, the reflections also revealed several areas for improvement that would increase the accessibility of the site to underserved and/or underrepresented teacher populations, better utilize the resources available and in general, improve the quality of the program and curriculum developed by the teachers. Included within this paper are suggestions that the authors would make to improve current and future RET sites. All of the teachers agreed or strongly agreed that their participation in the RET program increased their knowledge of STEM topics and specifically, civil engineering topics. The participants agreed to varying extents that they will use the information they learned from the program to teach their students and will implement the new strategies they gained to promote increased student learning about STEM topics. Furthermore, the feedback that they provided corroborated some of the same changes the authors plan to implement. 
    more » « less