Recent attacks have shown that SIKE is not secure and should not be used in its current state. However, this work was completed before these attacks were discovered and might be beneficial to other cryptosystems such as SQISign. The primary downside of SIKE is its performance. However, this work achieves new SIKE speed records even using less resources than the state-of-the-art. Our approach entails designing and optimizing a new field multiplier, SIKE-optimized Keccak unit, and high-level controller. On a Xilinx Virtex-7 FPGA, this architecture performs the NIST Level 1 SIKE scheme key encapsulation and key decapsulation functions in 2.23 and 2.39 ms, respectively. The combined key encapsulation and decapsulation time is 4.62 ms, which outperforms the next best Virtex-7 implementation by nearly 2 ms. Our implementation achieves speed records for the NIST Level 1, 2, and 3 parameter sets. Only our NIST Level 5 parameter set was beat by an all-out performance implementation. Our implementations also efficiently utilize the FPGA resources, achieving new records in area-time product metrics for all parameter sets. Overall, this work continues to push the bar for accelerating SIKE computations to make a stronger case for SIKE standardization.
more »
« less
High-Performance FPGA Accelerator for SIKE
Abstract—In this article, we provide improvements for the architecture of Supersingular Isogeny Key Encapsulation (SIKE), a post-quantum cryptography candidate.We develop a new highly optimized Montgomery multiplication algorithm and architecture for prime fields. The multiplier occupies less area and provide better timing results than the state-of-the-art.We also provide improvements to the scheduling of SIKE in our programROM.We implement SIKE for all Round 3 NISTsecurity levels (SIKEp434 for NISTsecurity level 1, SIKEp503 for NIST security level 2, SIKEp610 for NISTsecurity level 3, and SIKEp751 for NISTsecurity level 5) on Xilinx Artix 7 and Xilinx Virtex 7 FPGAs. Our best implementation (NISTsecurity level 1) runs 38 percent faster and occupies 30 percent less hardware resources in comparison to the leading counterpart available in the literature and implementations for other security levels achieved similar improvement.
more »
« less
- Award ID(s):
- 1801341
- PAR ID:
- 10337508
- Date Published:
- Journal Name:
- IEEE Transactions on Computers
- ISSN:
- 0018-9340
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work, we present the first highly-optimized implementation of Supersingular Isogeny Key Encapsulation (SIKE) submitted to NIST’s second round of post quantum standardization process, on 64-bit ARMv8 processors. To the best of our knowledge, this work is the first optimized implementation of SIKE round 2 on 64-bit ARM over SIKEp434 and SIKEp610. The proposed library is explicitly optimized for these two security levels and provides constant-time implementation of the SIKE mechanism on ARMv8-powered embedded devices. We adapt different optimization techniques to reduce the total number of underlying arithmetic operations on the filed level. In particular, the benchmark results on embedded processors equipped with ARM Cortex-A53@1.536 GHz show that the entire SIKE round 2 key encapsulation mechanism takes only 84 ms at NIST’s security level 1. Considering SIKE’s extremely small key size in comparison to other candidates, our result implies that SIKE is one of the promising candidates for key encapsulation mechanism on embedded devices in the quantum era.more » « less
-
Finite field multiplication plays the main role determining the efficiency of public key cryptography systems based on RSA and elliptic curve cryptography (ECC). Most recently, quantum-safe cryptographic systems are proposed based on supersingular isogenies on elliptic curves which require large integer multiplications over extended prime fields. In this work, we present two Montgomery multiplication architectures for special primes used in a post-quantum cryptography system known as supersingular isogeny key encapsulation (SIKE). We optimize two existing Montgomery multiplication algorithms and develop area-efficient and time-efficient Montgomery multiplication architectures for hardware implementations of post-quantum cryptography. Our proposed time-efficient architecture is 32% to 42% faster than the leading one (depending on the prime size) available in the literature which has been used in original SIKE submission to the NIST standardization process. The area-efficient architecture is 42% to 50% smaller than the counterparts and is about 3% to 11% faster depending on the NIST security level.more » « less
-
null (Ed.)Abstract In this paper we provide a framework for applying classical search and preprocessing to quantum oracles for use with Grover’s quantum search algorithm in order to lower the quantum circuit-complexity of Grover’s algorithm for single-target search problems. This has the effect (for certain problems) of reducing a portion of the polynomial overhead contributed by the implementation cost of quantum oracles and can be used to provide either strict improvements or advantageous trade-offs in circuit-complexity. Our results indicate that it is possible for quantum oracles for certain single-target preimage search problems to reduce the quantum circuit-size from O 2 n / 2 ⋅ m C $$O\left(2^{n/2}\cdot mC\right)$$ (where C originates from the cost of implementing the quantum oracle) to O ( 2 n / 2 ⋅ m C ) $$O(2^{n/2} \cdot m\sqrt{C})$$ without the use of quantum ram, whilst also slightly reducing the number of required qubits. This framework captures a previous optimisation of Grover’s algorithm using preprocessing [21] applied to cryptanalysis, providing new asymptotic analysis. We additionally provide insights and asymptotic improvements on recent cryptanalysis [16] of SIKE [14] via Grover’s algorithm, demonstrating that the speedup applies to this attack and impacting upon quantum security estimates [16] incorporated into the SIKE specification [14].more » « less
-
The advances in quantum technologies and the fast move toward quantum computing are threatening classical cryptography and urge the deployment of post-quantum (PQ) schemes. The only isogeny-based candidate forming part of the third round of the standardization, the Supersingular Isogeny Key Encapsulation (SIKE) mechanism, is a subject of constant latency optimizations given its attractive compact key size lengths and, thus, its limited bandwidth and memory requirements. In this work, we present a new speed record of the SIKE protocol by implementing novel low-level finite field arithmetic targeting ARMv7-M architecture. We develop a handcrafted assembly code for the modular multiplication and squaring functions where we obtain 8.71% and 5.38% of speedup, respectively, compared to the last best-reported assembly implementations for p434. After deploying the finite field optimized architecture to the SIKE protocol, we observe 5.63%, 3.93%, 3.48%, and 1.61% of latency reduction for SIKE p434, p503, p610, and p751, respectively, targeting the NIST recommended STM32F407VG discovery board for our experiments.more » « less
An official website of the United States government

