skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Study on the Effects of Gallium Droplet Consumption and Post Growth Annealing on Te- Doped GaAs Nanowire Proper-ties grown by Self-Catalyzed Molecular Beam Epitaxy
In this work, the effects of arsenic (As) flux used during gallium (Ga) seed droplet consumption and the post-growth annealing on the optical, electrical, and microstructural properties of self-catalyzed molecular beam epitaxially grown tellurium (Te)-doped GaAs nanowires (NWs) have been investigated using a variety of characterization techniques. NWs using the same amount of As flux for growth of the seed droplet consumption demonstrated reduced density of stacking faults at the NW tip with ~ 4-fold enhancement in the 4K photoluminescence (PL) in-tensity and increased single nanowire photocurrent over their higher As flux droplet consump-tion counterparts. Post-growth annealed NWs exhibited an additional low-energy PL peak at 1.31 eV that significantly reduced the overall PL intensity. The origin of this lower energy peak is as-signed to a photocarrier transition from the conduction band to the annealing assisted Te-induced complex acceptor state (TeAsVGa-). In addition, post-growth annealing demonstrated a detrimental impact on the electrical properties of the Te-doped GaAs NWs as revealed by suppressed single nanowire (SNW) and ensemble NW photocurrent with a consequent enhanced low-frequency noise level compared to as-grown doped NWs. This work demonstrates that each parameter in the growth space must be carefully examined to successfully grow self-catalyzed Te-doped NWs of high quality and is not a simple extension of the growth of corresponding intrinsic NWs.  more » « less
Award ID(s):
1832117
PAR ID:
10337514
Author(s) / Creator(s):
Editor(s):
Leonarda Francesca Liotta
Date Published:
Journal Name:
Catalysts
Volume:
12
ISSN:
2073-4344
Page Range / eLocation ID:
451
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This work reports a comprehensive investigation of the effect of gallium telluride (GaTe) cell temperature variation (TGaTe) on the morphological, optical, and electrical properties of doped-GaAsSb nanowires (NWs) grown by Ga-assisted molecular beam epitaxy (MBE). These studies led to an optimum doping temperature of 550 °C for the growth of tellurium (Te)-doped GaAsSb NWs with the best optoelectronic and structural properties. Te incorporation resulted in a decrease in the aspect ratio of the NWs causing an increase in the Raman LO/TO vibrational mode intensity ratio, large PL emission with an exponential decay tail on the high energy side, promoting tunnel-assisted current conduction in ensemble NWs and significant photocurrent enhancement in the single nanowire. A Schottky barrier photodetector using Te-doped ensemble NWs with broad spectral range and a longer wavelength cutoff at ~ 1.2 µm was demonstrated. These photodetectors exhibited responsivity in the range of 580 – 620 A/W and detectivity of 1.2 – 3.8 × 1012 Jones. The doped GaAsSb NWs have the potential for further improvement, paving the path for high-performance near-infrared (NIR) photodetection applications. 
    more » « less
  2. Abstract This work evaluates the passivation efficacy of thermal atomic layer deposited (ALD) Al 2 O 3 dielectric layer on self-catalyzed GaAs 1- x Sb x nanowires (NWs) grown using molecular beam epitaxy. A detailed assessment of surface chemical composition and optical properties of Al 2 O 3 passivated NWs with and without prior sulfur treatment were studied and compared to as-grown samples using x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and low-temperature photoluminescence (PL) spectroscopy. The XPS measurements reveal that prior sulfur treatment followed by Al 2 O 3 ALD deposition abates III–V native oxides from the NW surface. However, the degradation in 4K-PL intensity by an order of magnitude observed for NWs with Al 2 O 3 shell layer compared to the as-grown NWs, irrespective of prior sulfur treatment, suggests the formation of defect states at the NW/dielectric interface contributing to non-radiative recombination centers. This is corroborated by the Raman spectral broadening of LO and TO Raman modes, increased background scattering, and redshift observed for Al 2 O 3 deposited NWs relative to the as-grown. Thus, our work seems to indicate the unsuitability of ALD deposited Al 2 O 3 as a passivation layer for GaAsSb NWs. 
    more » « less
  3. Abstract This study presents the first report on patterned nanowires (NWs) of dilute nitride GaAsSbN on p-Si (111) substrates by self-catalyzed plasma-assisted molecular beam epitaxy. Patterned NW array with GaAsSbN of Sb composition of 3% as a stem provided the best yield of vertical NWs. Large bandgap tuning of ~ 75 meV, as ascertained from 4 K photoluminescence (PL), over a pitch length variation of 200–1200 nm has been demonstrated. Pitch-dependent axial and radial growth rates show a logistic sigmoidal growth trend different from those commonly observed in other patterned non-nitride III–V NWs. The sigmoidal fitting provides further insight into the PL spectral shift arising from differences in Sb and N incorporation from pitch induced variation in secondary fluxes. Results indicate that sigmoidal fitting can be a potent tool for designing patterned NW arrays of optimal pitch length for dilute nitrides and other highly mismatched alloys and heterostructures. 
    more » « less
  4. We report the first study on a GaAs/GaAsSb core−shell (CS)-configured nanowire (NW)-based separate absorption, charge control, and multiplication region avalanche photodiode (APD) operating in the near-infrared (NIR) region. Heterostructure NWs consisted of GaAs and tunable band gap GaAs1−xSbx serving as the multiplication and absorption layers, respectively. A doping compensation of absorber material to boost material absorption, segment-wise annealing to suppress trap-assisted tunneling, and an intrinsic i-type and n-type combination of the hybrid axial core to suppress axial electric field are successfully adopted in this work to realize a room-temperature (RT) avalanche photodetection extending up to 1.3 μm. In an APD device operating at RT with a unity-gain responsivity of 0.2−0.25 A/W at ∼5 V, the peak gain of 160 @ 1064 nm and 18 V reverse bias, gain >50 @ 1.3 μm, are demonstrated. Thus, this work provides a foundation and prospects for exploiting greater freedom in NW photodiode design using hybrid axial and CS heterostructures. 
    more » « less
  5. We report on the site-selective growth of >90% vertical GaAs nanowires (NWs) on Si (111) using self-assisted molecular beam epitaxy. The influences of growth parameters (pre-growth Ga opening time, V/III flux ratio) and processing conditions (reactive ion etching (RIE) and HF etching time) are investigated for different pitch lengths (200-1000 nm) to achieve vertical NWs. The processing variables determine the removal of the native oxide layer and the contact angle of Ga-droplet inside the patterned hole that are critical to the vertical orientation of the NWs. Pre-growth Ga-opening time is found to be a crucial factor determining the size of the droplet in the patterned hole, while the V/III beam equivalent pressure (BEP) ratio influenced the occupancy of the holes due to the axial growth of NWs being group-V limited. 
    more » « less