skip to main content


Title: Impact of processing and growth conditions on the site-catalyzed patterned growth of GaAs nanowires by molecular beam epitaxy
We report on the site-selective growth of >90% vertical GaAs nanowires (NWs) on Si (111) using self-assisted molecular beam epitaxy. The influences of growth parameters (pre-growth Ga opening time, V/III flux ratio) and processing conditions (reactive ion etching (RIE) and HF etching time) are investigated for different pitch lengths (200-1000 nm) to achieve vertical NWs. The processing variables determine the removal of the native oxide layer and the contact angle of Ga-droplet inside the patterned hole that are critical to the vertical orientation of the NWs. Pre-growth Ga-opening time is found to be a crucial factor determining the size of the droplet in the patterned hole, while the V/III beam equivalent pressure (BEP) ratio influenced the occupancy of the holes due to the axial growth of NWs being group-V limited.  more » « less
Award ID(s):
1649517
NSF-PAR ID:
10063484
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proc. SPIE 10354, Nanoengineering: Fabrication, Properties, Optics, and Devices XIV
Volume:
14
Page Range / eLocation ID:
14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tunneling field effect transistors (TFETs) have gained much interest in the previous decade for use in low power CMOS electronics due to their sub-thermal switching [1]. To date, all TFETs are fabricated as vertical nanowires or fins with long, difficult processes resulting in long learning cycle and incompatibility with modern CMOS processing. Because most TFETs are heterojunction TFETs (HJ-TFETs), the geometry of the device is inherently vertically because dictated by the orientation of the tunneling HJ, achieved by typical epitaxy. Template assisted selective epitaxy was demonstrated for vertical nanowires [2] and horizontally arranged nanorods [3] for III-V on Si integration. In this work, we report results on the area selective and template assisted epitaxial growth of InP, utilizing SiO2 based confined structures on InP substrates, which enables horizontal HJs, that can find application in the next generation of TFET devices. The geometries of the confined structures used are so that only a small area of the InP substrate, dubbed seed, is visible to the growth atmosphere. Growth is initiated selectively only at the seed and then proceeds in the hollow channel towards the source hole. As a result, growth resembles epitaxial lateral overgrowth from a single nucleation point [4], reaping the benefits of defect confinement and, contrary to spontaneous nanowire growth, allows orientation in an arbitrary, template defined direction. Indium phosphide 2-inch (110) wafers are used as the starting substrate. The process flow (Fig.1) consists of two plasma enhanced chemical vapor deposition (PECVD) steps of SiO2, appropriately patterned with electron beam lithography (EBL), around a PECVD amorphous silicon sacrificial layer. The sacrificial layer is ultimately wet etched with XeF2 to form the final, channel like template. Not shown in the schematic in Fig.1 is an additional, ALD deposited, 3 nm thick, alumina layer which prevents plasma damage to the starting substrate and is removed via a final tetramethylammonium hydroxide (TMAH) based wet etch. As-processed wafers were then diced and loaded in a Thomas Swan Horizontal reactor. Successful growth conditions found were 600°C with 4E6 mol/min of group III precursor, a V/III ratio of 400 and 8 lpm of hydrogen as carrier gas. Trimethylindium (TMIn) and tertiarybutylphosphine (TBP) were used as In and P precursors respectively. Top view SEM (Fig.2) confirms growth in the template thanks to sufficient Z-contrast despite the top oxide layer, not removed before imaging. TEM imaging shows a cross section of the confined structure taken at the seed hole (Fig.3). The initial growth interface suggests growth was initiated at the seed hole and atomic order of the InP conforms to the SiO2 template both at the seed and at the growth front. A sharp vertical facet is an encouraging result for the future development of vertical HJ based III-V semiconductor devices. 
    more » « less
  2. Abstract

    This study presents the first report on patterned nanowires (NWs) of dilute nitride GaAsSbN on p-Si (111) substrates by self-catalyzed plasma-assisted molecular beam epitaxy. Patterned NW array with GaAsSbN of Sb composition of 3% as a stem provided the best yield of vertical NWs. Large bandgap tuning of ~ 75 meV, as ascertained from 4 K photoluminescence (PL), over a pitch length variation of 200–1200 nm has been demonstrated. Pitch-dependent axial and radial growth rates show a logistic sigmoidal growth trend different from those commonly observed in other patterned non-nitride III–V NWs. The sigmoidal fitting provides further insight into the PL spectral shift arising from differences in Sb and N incorporation from pitch induced variation in secondary fluxes. Results indicate that sigmoidal fitting can be a potent tool for designing patterned NW arrays of optimal pitch length for dilute nitrides and other highly mismatched alloys and heterostructures.

     
    more » « less
  3. Self-assembly of vertically aligned III–V semiconductor nanowires (NWs) on two-dimensional (2D) van der Waals (vdW) nanomaterials allows for integration of novel mixed-dimensional nanosystems with unique properties for optoelectronic and nanoelectronic device applications. Here, selective-area vdW epitaxy (SA-vdWE) of InAs NWs on isolated 2D molybdenum disulfide (MoS 2 ) domains is reported for the first time. The MOCVD growth parameter space ( i.e. , V/III ratio, growth temperature, and total molar flow rates of metalorganic and hydride precursors) is explored to achieve pattern-free positioning of single NWs on isolated multi-layer MoS 2 micro-plates with one-to-one NW-to-MoS 2 domain placement. The introduction of a pre-growth poly- l -lysine surface treatment is highlighted as a necessary step for mitigation of InAs nucleation along the edges of triangular MoS 2 domains and for NW growth along the interior region of 2D micro-plates. Analysis of NW crystal structures formed under the optimal SA-vdWE condition revealed a disordered combination of wurtzite and zinc-blend phases. A transformation of the NW sidewall faceting structure is observed, resulting from simultaneous radial overgrowth during axial NW synthesis. A common lattice arrangement between axially-grown InAs NW core segments and MoS 2 domains is described as the epitaxial basis for vertical NW growth. A model is proposed for a common InAs/MoS 2 sub-lattice structure, consisting of three multiples of the cubic InAs unit cell along the [21̄1̄] direction, commensurately aligned with a 14-fold multiple of the Mo–Mo (or S–S) spacing along the [101̄0] direction of MoS 2 hexagonal lattice. The SA-vdWE growth mode described here enables controlled hybrid integration of mixed-dimensional III–V-on-2D heterostructures as novel nanosystems for applications in optoelectronics, nanoelectronics, and quantum enabling technologies. 
    more » « less
  4. Leonarda Francesca Liotta (Ed.)
    In this work, the effects of arsenic (As) flux used during gallium (Ga) seed droplet consumption and the post-growth annealing on the optical, electrical, and microstructural properties of self-catalyzed molecular beam epitaxially grown tellurium (Te)-doped GaAs nanowires (NWs) have been investigated using a variety of characterization techniques. NWs using the same amount of As flux for growth of the seed droplet consumption demonstrated reduced density of stacking faults at the NW tip with ~ 4-fold enhancement in the 4K photoluminescence (PL) in-tensity and increased single nanowire photocurrent over their higher As flux droplet consump-tion counterparts. Post-growth annealed NWs exhibited an additional low-energy PL peak at 1.31 eV that significantly reduced the overall PL intensity. The origin of this lower energy peak is as-signed to a photocarrier transition from the conduction band to the annealing assisted Te-induced complex acceptor state (TeAsVGa-). In addition, post-growth annealing demonstrated a detrimental impact on the electrical properties of the Te-doped GaAs NWs as revealed by suppressed single nanowire (SNW) and ensemble NW photocurrent with a consequent enhanced low-frequency noise level compared to as-grown doped NWs. This work demonstrates that each parameter in the growth space must be carefully examined to successfully grow self-catalyzed Te-doped NWs of high quality and is not a simple extension of the growth of corresponding intrinsic NWs. 
    more » « less
  5. Heterogeneous self-assembly of III–V nanostructures on inert two-dimensional monolayer materials enables novel hybrid nanosystems with unique properties that can be exploited for low-cost and low-weight flexible optoelectronic and nanoelectronic device applications. Here, the pseudo-van der Waals epitaxy (vdWE) growth parameter space for heterogeneous integration of InAs nanowires (NWs) with continuous films of single layer graphene (SLG) via metalorganic chemical vapor deposition (MOCVD) is investigated. The length, diameter, and number density of NWs, as well as areal coverage of parasitic islands, are quantified as functions of key growth variables including growth temperature, V/III ratio, and total flow rate of metalorganic and hydride precursors. A compromise between self-assembly of high aspect ratio NWs comprising high number density arrays and simultaneous minimization of parasitic growth coverage is reached under a selected set of optimal growth conditions. Exploration of NW crystal structures formed under various growth conditions reveals that a characteristic polytypic and disordered lattice is invariant within the explored parameter space. A growth evolution study reveals a gradual reduction in both axial and radial growth rates within the explored timeframe for the optimal growth conditions, which is attributed to a supply-limited competitive growth regime. Two strategies are introduced for further growth optimization. Firstly, it is shown that the absence of a pre-growth in situ arsine surface treatment results in a reduction of parasitic island coverage by factor of ∼0.62, while NW aspect ratio and number densities are simultaneously enhanced. Secondly, the use of a two-step flow-modulated growth procedure allows for realization of dense fields of high aspect ratio InAs NWs. As a result of the applied studies and optimization of the growth parameter space, the highest reported axial growth rate of 840 nm min −1 and NW number density of ∼8.3 × 10 8 cm −2 for vdWE of high aspect ratio (>80) InAs NW arrays on graphitic surfaces are achieved. This work is intended to serve as a guide for vdWE of self-assembled III–V semiconductor NWs such as In-based ternary and quaternary alloys on functional two-dimensional monolayer materials, toward device applications in flexible optoelectronics and tandem-junction photovoltaics. 
    more » « less