Understanding the processes that initiate volcanic eruptions after periods of quiescence are of paramount importance to interpreting volcano monitoring signals and mitigating volcanic hazards. However, studies of eruption initiation mechanisms are rarely systematically applied to high-risk volcanoes. Studies of erupted materials provide important insight into eruption initiation, as they provide direct insight into the physical and chemical changes that occur in magma reservoirs prior to eruptions, but are also often underutilized. Petrologic and geochemical studies can also constrain the timing of processes involved in eruption initiation, and the time that might be expected to elapse between remote detection of increased activity and eventual eruption. A compilation and analysis of literature data suggests that there are statistical differences in the composition, volume, style and timescales between eruptions initiated by different mechanisms. Knowledge of the processes that initiate eruptions at a given volcano may thus have significant predictive power. 
                        more » 
                        « less   
                    
                            
                            Reckoning with the Rocky Relationship Between Eruption Size and Climate Response: Toward a Volcano-Climate Index
                        
                    
    
            Volcanic eruptions impact climate, subtly and profoundly. The size of an eruption is only loosely correlated with the severity of its climate effects, which can include changes in surface temperature, ozone levels, stratospheric dynamics, precipitation, and ocean circulation. We review the processes—in magma chambers, eruption columns, and the oceans, biosphere, and atmosphere—that mediate the climate response to an eruption. A complex relationship between eruption size, style, duration, and the subsequent severity of the climate response emerges. We advocate for a new, consistent metric, the Volcano-Climate Index, to categorize climate response to eruptions independent of eruption properties and spanning the full range of volcanic activity, from brief explosive eruptions to long-lasting flood basalts. A consistent metric for categorizing the climate response to eruptions that differ in size, style, and duration is critical for establishing the relationshipbetween the severity and the frequency of such responses aiding hazard assessments, and furthering understanding of volcanic impacts on climate on timescales of years to millions of years. ▪ We review the processes driving the rocky relationship between eruption size and climate response and propose a Volcano-Climate Index. ▪ Volcanic eruptions perturb Earth's climate on a range of timescales, with key open questions regarding how processes in the magmatic system, eruption column, and atmosphere shape the climate response to volcanism. ▪ A Volcano-Climate Index will provide information on the volcano-climate severity-frequency distribution, analogous to earthquake hazards. ▪ Understanding of the frequency of specific levels of volcanic climate effects will aid hazard assessments, planning, and mitigation of societal impacts. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10337604
- Date Published:
- Journal Name:
- Annual Review of Earth and Planetary Sciences
- Volume:
- 50
- Issue:
- 1
- ISSN:
- 0084-6597
- Page Range / eLocation ID:
- 627 to 661
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The science of volcanology advances disproportionately during exceptionally large or well-observed eruptions. The 2018 eruption of Kīlauea Volcano (Hawai‘i) was its most impactful in centuries, involving an outpouring of more than one cubic kilometer of basalt, a magnitude 7 flank earthquake, and the volcano's largest summit collapse since at least the nineteenth century. Eruptive activity was documented in detail, yielding new insights into large caldera-rift eruptions; the geometry of a shallow magma storage-transport system and its interaction with rift zone tectonics; mechanisms of basaltic tephra-producing explosions; caldera collapse mechanics; and the dynamics of fissure eruptions and high-volume lava flows. Insights are broadly applicable to a range of volcanic systems and should reduce risk from future eruptions. Multidisciplinary collaboration will be required to fully leverage the diversity of monitoring data to address many of the most important outstanding questions. ▪ Unprecedented observations of a caldera collapse and coupled rift zone eruption yield new opportunities for advancing volcano science. ▪ Magma flow to a low-elevation rift zone vent triggered quasi-periodic step-like collapse of a summit caldera, which pressurized the magma system and sustained the eruption. ▪ Kīlauea's magmatic-tectonic system is tightly interconnected over tens of kilometers, with complex feedback mechanisms and interrelated hazards over widely varying time scales. ▪ The eruption revealed magma stored in diverse locations, volumes, and compositions, not only beneath the summit but also within the volcano's most active rift zone. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.more » « less
- 
            Abstract Seismicity during explosive volcanic eruptions remains challenging to observe through the eruptive noise, leaving first‐order questions unanswered. How do earthquake rates change as eruptions progress, and what is their relationship to the opening and closing of the eruptive vent? To address these questions for the Okmok Volcano 2008 explosive eruption, Volcano Explosivity Index 4, we utilized modern detection methods to enhance the existing earthquake catalog. Our enhanced catalog detected significantly more earthquakes than traditional methods. We located, relocated, determined magnitudes and classified all events within this catalog. Our analysis reveals distinct behaviors for long‐period (LP) and volcano‐tectonic (VT) earthquakes, providing insights into the opening and closing cycle. LP earthquakes occur as bursts beneath the eruptive vent and do not coincide in time with the plumes, indicating their relationship to an eruptive process that occurs at a high pressurization state, that is, partially closed conduit. In contrast, VT earthquakes maintain a steadier rate over a broader region, do not track the caldera deflation and have a largerb‐value during the eruption than before or after. The closing sequence is marked by a burst of LPs followed by small VTs south of the volcano. The opening sequence differs as only VTs extend to depth and migrate within minutes of the eruption onset. Our high‐resolution catalog offers valuable insights, demonstrating that volcanic conduits can transition between partially closed (clogged) and open (cracked) states during an eruption. Utilizing modern earthquake processing techniques enables clearer understanding of eruptions and holds promise for studying other volcanic events.more » « less
- 
            Abstract Infrasound (low frequency sound waves) can be used to monitor and characterize volcanic eruptions. However, infrasound sensors are usually placed on the ground, thus providing a limited sampling of the acoustic radiation pattern that can bias source size estimates. We present observations of explosive eruptions from a novel uncrewed aircraft system (UAS)‐based infrasound sensor platform that was strategically hovered near the active vents of Stromboli volcano, Italy. We captured eruption infrasound from short‐duration explosions and jetting events. While potential vertical directionality was inconclusive for the short‐duration explosion, we find that jetting events exhibit vertical sound directionality that was observed with a UAS close to vertical. This directionality would not have been observed using only traditional deployments of ground‐based infrasound sensors, but is consistent with jet noise theory. This proof‐of‐concept study provides unique information that can improve our ability to characterize and quantify the directionality of volcanic eruptions and their associated hazards.more » « less
- 
            Abstract Drylands are highly vulnerable to climate change due to their fragile ecosystems and limited ability to adapt. In contrast to the global drying after tropical volcanic eruptions shown previously, we demonstrate that large tropical volcanic eruptions can induce significant two-year hydroclimatic wetting over drylands by employing the last millennium simulations. During this wetting period, which extends from the first to the third boreal winter after the eruption, several hydroclimatic indicators, such as self-calibrating Palmer Drought Severity Index based on the Penman-Monteith equation for potential evapotranspiration (scPDSIpm), standard precipitation evapotranspiration index (SPEI), aridity index (AI), top-10cm soil moisture (SM10cm), and leaf area index (LAI), show significant positive anomalies over most drylands. The primary contribution to the wetting response is the potential evapotranspiration (PET) reduction resulting from dryland surface cooling and reduced solar radiation, as well as a weak contribution from increased precipitation. The latter is due to the wind convergence into drylands caused by slower tropical cooling compared to drylands. The wetting response of drylands to volcanic eruptions also demonstrates some benefits over the global hydrological slowdown resulting from stratospheric aerosol injection, which replicates the cooling effects of volcanic eruptions to address global warming.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    