skip to main content


Title: Reckoning with the Rocky Relationship Between Eruption Size and Climate Response: Toward a Volcano-Climate Index
Volcanic eruptions impact climate, subtly and profoundly. The size of an eruption is only loosely correlated with the severity of its climate effects, which can include changes in surface temperature, ozone levels, stratospheric dynamics, precipitation, and ocean circulation. We review the processes—in magma chambers, eruption columns, and the oceans, biosphere, and atmosphere—that mediate the climate response to an eruption. A complex relationship between eruption size, style, duration, and the subsequent severity of the climate response emerges. We advocate for a new, consistent metric, the Volcano-Climate Index, to categorize climate response to eruptions independent of eruption properties and spanning the full range of volcanic activity, from brief explosive eruptions to long-lasting flood basalts. A consistent metric for categorizing the climate response to eruptions that differ in size, style, and duration is critical for establishing the relationshipbetween the severity and the frequency of such responses aiding hazard assessments, and furthering understanding of volcanic impacts on climate on timescales of years to millions of years. ▪ We review the processes driving the rocky relationship between eruption size and climate response and propose a Volcano-Climate Index. ▪ Volcanic eruptions perturb Earth's climate on a range of timescales, with key open questions regarding how processes in the magmatic system, eruption column, and atmosphere shape the climate response to volcanism. ▪ A Volcano-Climate Index will provide information on the volcano-climate severity-frequency distribution, analogous to earthquake hazards. ▪ Understanding of the frequency of specific levels of volcanic climate effects will aid hazard assessments, planning, and mitigation of societal impacts.  more » « less
Award ID(s):
2221896 2015322
NSF-PAR ID:
10337604
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annual Review of Earth and Planetary Sciences
Volume:
50
Issue:
1
ISSN:
0084-6597
Page Range / eLocation ID:
627 to 661
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The framework of Representative Key Risks (RKRs) has been adopted by the Intergovernmental Panel on Climate Change Working Group II (WGII) to categorize, assess and communicate a wide range of regional and sectoral key risks from climate change. These are risks expected to become severe due to the potentially detrimental convergence of changing climate conditions with the exposure and vulnerability of human and natural systems. Other papers in this special issue treat each of eight RKRs holistically by assessing their current status and future evolution as a result of this convergence. However, in these papers, such assessment cannot always be organized according to a systematic gradation of climatic changes. Often the big-picture evolution of risk has to be extrapolated from either qualitative effects of “low”, “medium” and “high” warming, or limited/focused analysis of the consequences of particular mitigation choices (e.g., benefits of limiting warming to 1.5 or 2C), together with consideration of the socio-economic context and possible adaptation choices. In this study we offer a representation – as systematic as possible given current literature and assessments – of the future evolution of the hazard components of RKRs. We identify the relevant hazards for each RKR, based upon the WGII authors’ assessment, and we report on their current state and expected future changes in magnitude, intensity and/or frequency, linking these changes to Global Warming Levels (GWLs) to the extent possible. We draw on the assessment of changes in climatic impact-drivers relevant to RKRs described in the 6th Assessment Report by Working Group I supplemented when needed by more recent literature. For some of these quantities - like regional trends in oceanic and atmospheric temperature and precipitation, some heat and precipitation extremes, permafrost thaw and Northern Hemisphere snow cover - a strong and quantitative relationship with increasing GWLs has been identified. For others - like frequency and intensity of tropical cyclones and extra-tropical storms, and fire weather - that link can only be described qualitatively. For some processes - like the behavior of ice sheets, or changes in circulation dynamics - large uncertainties about the effects of different GWLs remain, and for a few others - like ocean pH and air pollution - the composition of the scenario of anthropogenic emissions is most relevant, rather than the warming reached. In almost all cases, however, the basic message remains that every small increment in CO2 concentration in the atmosphere and associated warming will bring changes in climate phenomena that will contribute to increasing risk of impacts on human and natural systems, in the absence of compensating changes in these systems’ exposure and vulnerability, and in the absence of effective adaptation. Our picture of the evolution of RKR-relevant climatic impact-drivers complements and enriches the treatment of RKRs in the other papers in at least two ways: by filling in their often only cursory or limited representation of the physical climate aspects driving impacts, and by providing a fuller representation of their future potential evolution, an important component – if never the only one – of the future evolution of risk severity. 
    more » « less
  2. Abstract

    Seismic waves are commonly used to monitor unrest before, during, and after volcanic eruptions. The source of seismic tremor during a sustained explosive volcanic eruption is not well understood. Recent observations of the 2016 eruption of Pavlof Volcano, Alaska, revealed a change in the relationship (hysteresis) between ash plume height and seismic amplitude over time. Based on similarities in physical processes and observed seismic tremor in rivers, we explore two key sources of seismic energy in the volcanic conduit: (1) forces exerted by particle impacts and (2) dynamic pressure changes by the turbulent flow. We develop a physical model calculating the seismic power spectral density (PSD), where forces on the conduit wall are convolved with the Green's function for Rayleigh waves. Using reasonable eruption parameters, the model is able to reproduce the frequency spectrum from the Pavlof eruption, although the modeled amplitudes are generally lower. We test the relative importance of different eruption parameters, including grain size, velocity, and conduit dimensions. We find that turbulence generally dominates over particle impacts. However, to reach the PSD amplitude during the Pavlof eruption, large grain sizes are required, as they have the greatest relative influence on the modeled amplitude. The hysteresis between plume height and seismic amplitude can then potentially be explained by grain size changes. The PSD shape is mostly determined by the Rayleigh‐wave quality factor Q, and substantial variations in seismic amplitude can be modeled assuming a constant mass eruption rate.

     
    more » « less
  3. Abstract. Mount Somma–Vesuvius is a stratovolcano that represents a geological hazard to the population of the city of Naples and surrounding towns in southern Italy. Historically, volcanic eruptions at Mt. Somma–Vesuvius (SV) include high-magnitude Plinian eruptions, such as the infamous 79 CE eruption that occurred after 295 years of quiescence and killed thousands of people in Pompeii and surrounding towns and villages. The last eruption at SV was in 1944 and showed a Volcanic Explosivity Index (VEI) of 3 (0.01 km3 of volcanic material erupted). Following the 1944 eruption, SV has been dormant for the past nearly 79 years, with only minor fumarolic and seismic activity. During its long history, centuries of dormancy at SV have ended with Plinian eruptions (VEI 6) that signal the beginning of a new cycle of eruptive activity. Thus, the current dormancy stage demands a need to better understand the mechanism involved in high-magnitude eruptions in order to better predict future eruption magnitude and style. Despite centuries of research on the SV volcanic system, many questions remain, including the evolution of magmatic volatiles from deep primitive magmas to shallower more evolved magmas. Developing a better understanding of the physical and chemical processes associated with volatile evolution at SV can provide insights into magma dynamics and the mechanisms that trigger highly explosive eruptions at SV. In this study, we present new data for the pre-eruptive volatile contents of magmas associated with four Plinian and two inter-Plinian eruptions at SV based on analyses of reheated melt inclusions (MIs) hosted in olivine. We correct the volatile contents of bubble-bearing MIs by taking into account the volatile contents of bubbles in the MIs. We recognize two groups of MIs: one group hosted in high-Fo olivine (Fo85–90) and relatively rich in volatiles and the other group hosted in low-Fo olivine (Fo70–69) and relatively depleted in volatiles. The correlation between volatile contents and compositions of host olivines suggests that magma fractionation took place under volatile-saturated conditions and that more differentiated magmas reside at shallower levels relative to less evolved/quasi-primitive magmas. Using the CO2 contents of corrected MIs hosted in Fo90 olivine from SV, we estimate that 347 to 686 t d−1 of magmatic CO2 exsolved from SV magmas during the last 3 centuries (38–75 Mt in total) of volcanic activity. Although this study is limited to only few SV magmas, we suggest that further study applying similar methods could shed light on the apparent lack of correlation between the volatile contents of MIs and the style and age of eruptions. Further, such studies could provide additional constraints on the origin of CO2 and the interaction between the carbonate platform and ascending magmas below SV.

     
    more » « less
  4. Abstract

    One of the biggest challenges in volcanic hazard assessment is to understand how and why eruptive style changes within the same eruptive period or even from one eruption to the next at a given volcano. This review evaluates the competing processes that lead to explosive and effusive eruptions of silicic magmas. Eruptive style depends on a set of feedback involving interrelated magmatic properties and processes. Foremost of these are magma viscosity, gas loss and external properties such as conduit geometry. Ultimately, these parameters control the speed at which magmas ascend, decompress and outgas en route to the surface, and thus determine eruptive style and evolution.

     
    more » « less
  5. The science of volcanology advances disproportionately during exceptionally large or well-observed eruptions. The 2018 eruption of Kīlauea Volcano (Hawai‘i) was its most impactful in centuries, involving an outpouring of more than one cubic kilometer of basalt, a magnitude 7 flank earthquake, and the volcano's largest summit collapse since at least the nineteenth century. Eruptive activity was documented in detail, yielding new insights into large caldera-rift eruptions; the geometry of a shallow magma storage-transport system and its interaction with rift zone tectonics; mechanisms of basaltic tephra-producing explosions; caldera collapse mechanics; and the dynamics of fissure eruptions and high-volume lava flows. Insights are broadly applicable to a range of volcanic systems and should reduce risk from future eruptions. Multidisciplinary collaboration will be required to fully leverage the diversity of monitoring data to address many of the most important outstanding questions. ▪ Unprecedented observations of a caldera collapse and coupled rift zone eruption yield new opportunities for advancing volcano science. ▪ Magma flow to a low-elevation rift zone vent triggered quasi-periodic step-like collapse of a summit caldera, which pressurized the magma system and sustained the eruption. ▪ Kīlauea's magmatic-tectonic system is tightly interconnected over tens of kilometers, with complex feedback mechanisms and interrelated hazards over widely varying time scales. ▪ The eruption revealed magma stored in diverse locations, volumes, and compositions, not only beneath the summit but also within the volcano's most active rift zone.

    Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

     
    more » « less