Quantum Information Science and Engineering (QISE) is rapidly gaining interest across a wide range of disciplines. As QISE continues to evolve, engineering will play an increasingly critical role in advancing quantum technologies. While efforts to characterize introductory QISE courses are underway, a comprehensive understanding of QISE education across the United States remains lacking. Developing a broad understanding of the QISE education landscape is crucial for addressing the needs of the growing quantum industry and ensuring equitable access for a diverse range of participants. This paper presents part of an ongoing effort to characterize the current landscape of QISE courses and degree programs in higher education in the US. To achieve this, we used publicly available information from university and college websites to capture information on over 8000 courses that address quantum in some way and nearly 90 QISE specific programs (e.g., degrees, minors, certificates). The majority of these programs are interdisciplinary and include engineering; 14 of them are housed exclusively in engineering departments. We find most programs are offered at research intensive institutions. Our results showcase an opportunity for program developers at non-research intensive institutions to justify the creation of QISE programs, which would also address calls from different stakeholders in QISE education for a more diverse QISE workforce. We suggest strategies based on the findings of this study such as integrating QISE into existing courses, investing in the development of QISE courses and programs at non-PhD-granting institutions, and making courses with QISE content accessible to students from a variety of majors.
more »
« less
Informing the Public and Educating Students on Plastic Recycling
Approximately 300 million tons of plastic waste is generated per year. The major portion of this plastic waste is landfilled, while part of it leaks into the environment. When plastic waste enters the terrestrial or aqueous environment, it can have negative impacts on ecosystems, human health, and wildlife. Increasing the amount of plastic waste that is recycled will correspondingly reduce the amount of plastic waste that enters the environment. By educating the public and industry on plastic recycling, current recycling programs can be used more efficiently, and new programs can be created. Education material on plastic recycling is available through professional and industry associations, foundations with an environmental focus, university courses, and short courses offered with private companies. This review assembles and analyzes the current education material on plastic recycling that is available from these providers. The material compiled here can be used to gain insight into specific plastic recycling-related topics, to identify areas of recycling education that can be improved, and as a resource to help build university level courses. There is currently a dearth of plastic recycling courses offered at the university level. Educating more students on plastic recycling will equip them with the knowledge and skills to make informed decisions as consumers, and to implement plastic recycling systems at the professional level.
more »
« less
- Award ID(s):
- 2029375
- PAR ID:
- 10337692
- Date Published:
- Journal Name:
- Recycling
- Volume:
- 6
- Issue:
- 4
- ISSN:
- 2313-4321
- Page Range / eLocation ID:
- 69
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The global production and consumption of plastics has increased at an alarming rate over the last few decades. The accumulation of pervasive and persistent waste plastic has concomitantly increased in landfills and the environment. The societal, ecological, and economic problems of plastic waste/pollution demand immediate and decisive action. In 2015, only 9% of plastic waste was successfully recycled in the United States. The major current recycling processes focus on the mechanical recycling of plastic waste; however, even this process is limited by the sorting/pretreatment of plastic waste and degradation of plastics during the process. An alternative to mechanical processes is chemical recycling of plastic waste. Efficient chemical recycling would allow for the production of feedstocks for various uses including fuels and chemical feedstocks to replace petrochemicals. This review focuses on the most recent advances for the chemical recycling of three major polymers found in plastic waste: PET, PE, and PP. Commercial processes for recycling hydrolysable polymers like polyesters or polyamides, polyolefins, or mixed waste streams are also discussed.more » « less
-
Abstract This paper presents an exergy-based sustainability analysis of manufacturing roof tiles from plastic waste in Uganda. This work focuses specifically on the developing country context and on utilizing waste material. A summary of the current Ugandan plastic waste situation, environmental and health issues associated with plastic waste, current means of recycling plastic waste into new products, and an analysis of the Ugandan roofing market is presented. The total exergy consumed to produce one batch of 75 tiles is over 240 MJ, the potentially recoverable exergy is nearly 17 MJ (8% of consumed exergy), and the realistic recoverable exergy is over 6.4 MJ (nearly 3% of consumed exergy). Recycling plastic waste into roof tiles saves a net 188 kg of CO2 from entering the atmosphere per batch when compared with open burning. If all of Kampala’s plastic waste was converted to roofing tiles, nearly 560 tonnes of CO2 could be saved per year.more » « less
-
Despite calls over the past twenty years to develop graduate STEM education models that prepare students for the new post-graduate workforce, few innovations in graduate STEM education have been disseminated. Given the diversity of graduate candidates’ prior skills, preparation, and individual career aspirations, modernizing STEM graduate programs is needed to support and empower student success in graduate programs and beyond. In this session, participants will learn about new research into the development and implementation of a personalized learning model (PLM) for graduate STEM education employed in a chemical engineering department at an R1 university. Our PLM integrates student-centered approaches in coursework, research, and professional development in multiple programmatic components. The key components of our PLM include guided student creation of independent development plans (IDPs), modularization of graduate courses and professional development streams, scaffolding curricular instruction to prioritize independence and mastery, using IDPs for directed research and career discussions and assessment of student performance and learning, and evaluation of the program from current students, alumni, faculty, and industry partners. Our comprehensive PLM plan is designed to maximize impact through personalized learning touchpoints throughout all aspects of graduate training. This presentation will focus on one element of our PLM, the modularization of the chemical engineering core graduate courses. To ensure the learning in core graduate courses reflects the diverse needs of chemical engineers, we generated a body of knowledge (BOK) for graduate chemical engineering in collaboration with our technical advisory board (TAB), which included chemical engineers and people that work with chemical engineers from industry, national labs, academia, and entrepreneurial representatives. We started by collecting the learning objectives (LO’s) from all core chemical engineering courses: Thermodynamics, Kinetics and Reactor Design, Transport Phenomena, Mathematical Methods, and Issues in Research and Teaching. The LO’s were refined by alignment with course assignments and activities and re-written using the most accurate Bloom’s Taxonomy verbs in collaboration with an instructional designer. We utilized GroupWisdomTM for group concept mapping of the new LO’s and provided an opportunity for the TAB to add new LO’s, identified by the individuals in the TAB to be critical for success in each member’s occupation. LO’s for the chemical engineering core courses were sorted on the level of knowledge (undergraduate, graduate, and specialized) and rated for importance by the TAB. Using GroupWisdom’sTM analytic tool for creating a similarity matrix for sorting the level of LO’s, multidimensional scaling, and hierarchical cluster analysis, all core course LO’s have been grouped into 6 clusters. These clusters, along with the current course list and the LO importance ratings, helped us visualize converting chemical engineering core courses into 1-credit hour modules. This restructured curriculum offers opportunities for ensuring that students have learned the requisite prior knowledge by review of essential undergraduate principles, streamlining essential graduate-level material, and supporting self-directed learning through the selection of specialized modules that align with students’ research and career goals. This proposed approach shifts core graduate chemical engineering education to an asset-based system, addressing knowledge gaps and ensuring rigorous, tailored learning experiences.more » « less
-
With the ever-increasing demand for plastics, sustainable recycling methods are key necessities. The current plastics industry can manage to recycle only 10% of the 400 million metric tons of plastic produced globally. Waste plastics, in the current infrastructure, land up mostly in landfills. Although a lot of research efforts have been spent on processing and recycling co-mingled mixed plastics, energy-efficient sustainable and scalable routes for plastic upcycling are still lacking. Catalytic valorization of waste plastic feedstock is one of the potential scalable routes for plastic upcycling. Silica-alumina based materials, and zeolites have shown a lot of promise. A major interest lies in restricting catalyst deactivation, and refining product selectivity and yield for such catalytic processes. This article highlights ChemPren technology as a clean energy solution to waste plastic recycling. Co-mingled, mixed plastic feedstock along with spray dried, attrition resistant, ZSM-5 containing catalysts is preprocessed with an extruder to form optimally sized particles and fed into a fluidized bed reactor for short contact times to produce selectively and in high yields ethylenes, propylenes and butylenes. This techno-economic perspective indicates that the ChemPren technology can produce propylene at $0.16 per lb, whereas the current selling price of virgin propylene is $0.54 per lb. This technology can serve as a platform for mixed plastic upcycling, with more advancements necessary in the form of robust and resilient catalysts and reactor operation strategies for tuning product selectivity.more » « less
An official website of the United States government

