This communication describes the synthesis of new bis-oxazoline chiral ligands (SPIROX) derived from the C2-symmetric spirocyclic scaffold (SPIROL). The readily available (R,R,R)-SPIROL (2) previously developed by our group was subjected to a three-step sequence that provided key diacid intermediate (R,R,R)-7 in 75% yield. This intermediate was subsequently coupled with (R)- and (S)-phenylglycinols to provide diastereomeric products, the cyclization of which led to two diastereomeric SPIROX ligands (R,R,R,R,R)-3a and (R,R,R,S,S)-3b in 85% and 79% yield, respectively. The complexation of (R,R,R,R,R)-3a and (R,R,R,S,S)-3b with CuCl and Cu(OTf)2 resulted in active catalysts that promoted the asymmetric reaction of α-diazopropionate and phenol. The resultant O–H insertion product was formed in 88% yield, and with excellent selectivity (97% ee) when ligand (R,R,R,R,R)-3a was used. 
                        more » 
                        « less   
                    
                            
                            Exploration of chiral diastereomeric spiroketal (SPIROL)-based phosphinite ligands in asymmetric hydrogenation of heterocycles
                        
                    
    
            New and readily available chiral SPIROL-based diphosphinite ligands (SPIRAPO) have been prepared and employed for iridium-catalyzed asymmetric hydrogenations of quinolines, quinoxalines and 2 H -1,4-bezoxazin-2-ones. While the structurally similar ( R , R , R )-SPIRAPO and ( R )-SPINOL-based phosphinites were not the best ligands for these transformations, the ( S , R , R )-diastereomer of SPIRAPO was found to be highly effective ligand for the reduction of 20 different heterocyclic systems with loadings as low as S/C = 10 000. This dearomatizative hydrogenation provided direct access to optically active tetrahydroquinolines in high enantioselectivities (up to 94% ee) and excellent yields (up to 99%), and was used to generate 1.75 g of natural alkaloid (−)-( R )-angustureine. This protocol was subsequently extended to achieve asymmetric hydrogenation of quinoxalines and 2 H -1,4-benzoxazin-2-ones in good to excellent enantioselectivities. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1350060
- PAR ID:
- 10337722
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 56
- Issue:
- 60
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 8432 to 8435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Alkynes and 1,3‐dienes are among the most readily available precursors for organic synthesis. We report two distinctly different, catalyst‐dependent, modes of regio‐ and enantioselective cycloaddition reactions between these classes of compounds providing rapid access to highly functionalized 1,4‐cyclohexadienesorcyclobutenes from thesameprecursors. Complexes of an earth abundant metal, cobalt, with several commercially available chiral bisphosphine ligands with narrow bite angles catalyze [4+2]‐cycloadditions between a 1,3‐diene and an alkyne giving a cyclohexa‐1,4‐diene in excellent chemo‐, regio‐ and enantioselectivities. In sharp contrast, complex of a finely tuned phosphino‐oxazoline ligand promotes unique [2+2]‐cycloaddition between the alkyne and the terminal double bond of the diene giving a highly functionalized cyclobutene in excellent regio‐ and enantioselectivities.more » « less
- 
            Abstract We report herein the development of stereodivergent syntheses of enantioenriched homoallylic alcohols using chiral nonracemic α‐CH2Bpin‐substituted crotylboronate. Chiral phosphoric acid (S)‐A‐catalyzed asymmetric allyl addition with the reagent gaveZ‐anti‐homoallylic alcohols with excellent enantioselectivities andZ‐selectivities. When the enantiomeric acid catalyst (R)‐Awas utilized, the stereoselectivity was completely reversed andE‐anti‐homoallylic alcohols were obtained with highE‐selectivities and excellent enantioselectivities. By pairing the chirality of the boron reagent with the catalyst, two complementary stereoisomers of chiral homoallylic alcohols can be obtained selectively from the same boron reagent. DFT computational studies were conducted to probe the origins of the observed stereoselectivity. These reactions generate highly enantioenriched homoallylic alcohol products that are valuable for rapid construction of polyketide structural frameworks.more » « less
- 
            A highly enantio- and diastereoselective method for the synthesis of functionalized chroman-2-ones and chromanes was achieved by using an organocatalytic domino Michael/hemiacetalization reaction of aliphatic aldehydes and ( E )-2-(2-nitrovinyl)phenols followed by a PCC oxidation and dehydroxylation, respectively. Using the modularly designed organocatalysts (MDOs) self-assembled from cinchona alkaloid derivatives and amino acids in the reaction media, the title products were obtained in good to high yields (up to 97%) and excellent diastereoselectivities (up to 99 : 1 dr) and enantioselectivities (up to 99% ee).more » « less
- 
            Abstract This manuscript describes transfer hydrogenation of bicyclic nitrogen-containing heterocyclic compounds using the immobilized chiral phosphoric acid catalyst (R)-PS-AdTRIP in batch and continuous flow. A significant improvement in enantioselectivities is achieved in continuous flow with a fluidized bed reactor packed with (R)-PS-AdTRIP when the flow rate is increased from 0.2 mL/min to 2.0–2.5 mL/min. The optimized continuous flow conditions consistently provide 4–6% ee higher selectivity than transfer hydrogenation in batch with 2 mol% of (R)-PS-AdTRIP, and are used to generate multiple chiral products with the same fluidized bed reactor.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    