Understanding the fundamental mechanism behind the success of deep neural networks is one of the key challenges in the modern machine learning literature. Despite numerous attempts, a solid theoretical analysis is yet to be developed. In this paper, we develop a novel unified framework to reveal a hidden regularization mechanism through the lens of convex optimization. We first show that the training of multiple threelayer ReLU sub-networks with weight decay regularization can be equivalently cast as a convex optimization problem in a higher dimensional space, where sparsity is enforced via a group `1- norm regularization. Consequently, ReLU networks can be interpreted as high dimensional feature selection methods. More importantly, we then prove that the equivalent convex problem can be globally optimized by a standard convex optimization solver with a polynomial-time complexity with respect to the number of samples and data dimension when the width of the network is fixed. Finally, we numerically validate our theoretical results via experiments involving both synthetic and real datasets.
more »
« less
High-Dimensional Learning Under Approximate Sparsity with Applications to Nonsmooth Estimation and Regularized Neural Networks
High-dimensional statistical learning (HDSL) has wide applications in data analysis, operations research, and decision making. Despite the availability of multiple theoretical frameworks, most existing HDSL schemes stipulate the following two conditions: (a) the sparsity and (b) restricted strong convexity (RSC). This paper generalizes both conditions via the use of the folded concave penalty (FCP). More specifically, we consider an M-estimation problem where (i) (conventional) sparsity is relaxed into the approximate sparsity and (ii) RSC is completely absent. We show that the FCP-based regularization leads to poly-logarithmic sample complexity; the training data size is only required to be poly-logarithmic in the problem dimensionality. This finding can facilitate the analysis of two important classes of models that are currently less understood: high-dimensional nonsmooth learning and (deep) neural networks (NNs). For both problems, we show that poly-logarithmic sample complexity can be maintained. In particular, our results indicate that the generalizability of NNs under overparameterization can be theoretically ensured with the aid of regularization.
more »
« less
- Award ID(s):
- 2016571
- PAR ID:
- 10337759
- Date Published:
- Journal Name:
- Operations Research
- ISSN:
- 0030-364X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sparsity of a learning solution is a desirable feature in machine learning. Certain reproducing kernel Banach spaces (RKBSs) are appropriate hypothesis spaces for sparse learning methods. The goal of this paper is to understand what kind of RKBSs can promote sparsity for learning solutions. We consider two typical learning models in an RKBS: the minimum norm interpolation (MNI) problem and the regularization problem. We first establish an explicit representer theorem for solutions of these problems, which represents the extreme points of the solution set by a linear combination of the extreme points of the subdifferential set, of the norm function, which is data-dependent. We then propose sufficient conditions on the RKBS that can transform the explicit representation of the solutions to a sparse kernel representation having fewer terms than the number of the observed data. Under the proposed sufficient conditions, we investigate the role of the regularization parameter on sparsity of the regularized solutions. We further show that two specific RKBSs, the sequence space l_1(N) and the measure space, can have sparse representer theorems for both MNI and regularization models.more » « less
-
We give nearly matching upper and lower bounds on the oracle complexity of finding ϵ-stationary points (∥∇F(x)∥≤ϵ in stochastic convex optimization. We jointly analyze the oracle complexity in both the local stochastic oracle model and the global oracle (or, statistical learning) model. This allows us to decompose the complexity of finding near-stationary points into optimization complexity and sample complexity, and reveals some surprising differences between the complexity of stochastic optimization versus learning. Notably, we show that in the global oracle/statistical learning model, only logarithmic dependence on smoothness is required to find a near-stationary point, whereas polynomial dependence on smoothness is necessary in the local stochastic oracle model. In other words, the separation in complexity between the two models can be exponential, and the folklore understanding that smoothness is required to find stationary points is only weakly true for statistical learning. Our upper bounds are based on extensions of a recent “recursive regularization” technique proposed by Allen-Zhu (2018). We show how to extend the technique to achieve near-optimal rates, and in particular show how to leverage the extra information available in the global oracle model. Our algorithm for the global model can be implemented efficiently through finite sum methods, and suggests an interesting new computational-statistical tradeoffmore » « less
-
We study the generalization of two-layer ReLU neural networks in a univariate nonparametric regression problem with noisy labels. This is a problem where kernels (\emph{e.g.} NTK) are provably sub-optimal and benign overfitting does not happen, thus disqualifying existing theory for interpolating (0-loss, global optimal) solutions. We present a new theory of generalization for local minima that gradient descent with a constant learning rate can \emph{stably} converge to. We show that gradient descent with a fixed learning rate η can only find local minima that represent smooth functions with a certain weighted \emph{first order total variation} bounded by 1/η−1/2+O˜(σ+MSE‾‾‾‾‾√) where σ is the label noise level, MSE is short for mean squared error against the ground truth, and O˜(⋅) hides a logarithmic factor. Under mild assumptions, we also prove a nearly-optimal MSE bound of O˜(n−4/5) within the strict interior of the support of the n data points. Our theoretical results are validated by extensive simulation that demonstrates large learning rate training induces sparse linear spline fits. To the best of our knowledge, we are the first to obtain generalization bound via minima stability in the non-interpolation case and the first to show ReLU NNs without regularization can achieve near-optimal rates in nonparametric regression.more » « less
-
Abstract Advances in compressive sensing (CS) provided reconstruction algorithms of sparse signals from linear measurements with optimal sample complexity, but natural extensions of this methodology to nonlinear inverse problems have been met with potentially fundamental sample complexity bottlenecks. In particular, tractable algorithms for compressive phase retrieval with sparsity priors have not been able to achieve optimal sample complexity. This has created an open problem in compressive phase retrieval: under generic, phaseless linear measurements, are there tractable reconstruction algorithms that succeed with optimal sample complexity? Meanwhile, progress in machine learning has led to the development of new data‐driven signal priors in the form of generative models, which can outperform sparsity priors with significantly fewer measurements. In this work, we resolve the open problem in compressive phase retrieval and demonstrate that generative priors can lead to a fundamental advance by permitting optimal sample complexity by a tractable algorithm. We additionally provide empirics showing that exploiting generative priors in phase retrieval can significantly outperform sparsity priors. These results provide support for generative priors as a new paradigm for signal recovery in a variety of contexts, both empirically and theoretically. The strengths of this paradigm are that (1) generative priors can represent some classes of natural signals more concisely than sparsity priors, (2) generative priors allow for direct optimization over the natural signal manifold, which is intractable under sparsity priors, and (3) the resulting non‐convex optimization problems with generative priors can admit benign optimization landscapes at optimal sample complexity, perhaps surprisingly, even in cases of nonlinear measurements.more » « less
An official website of the United States government

