skip to main content


Title: Electronic landscape of the f -electron intermetallics with the ThCr 2 Si 2 structure
Chemical/structural maps provide guidance for discovery of exotic quantum states in f -electron intermetallics.  more » « less
Award ID(s):
2209804 1904361
NSF-PAR ID:
10337775
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Science Advances
Volume:
8
Issue:
32
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The previously unreported layered compounds IrTe 2 I and RhTe 2 I were prepared by a high-pressure synthesis method. Single crystal X-ray and powder X-ray diffraction studies find that the compounds are isostructural, crystallizing in a layered orthorhombic structure in the non-centrosymmetric, non-symmorphic space group Pca 2 1 (#29). Characterization reveals diamagnetic, high resistivity, semiconducting behavior for both compounds, consistent with the +3 chemical valence and d 6 electronic configurations for both iridium and rhodium and the Te–Te dimers seen in the structural study. Electronic band structures are calculated for both compounds, showing good agreement with the experimental results. 
    more » « less
  2. Abstract

    Synthesizing solids in molten fluxes enables the rapid diffusion of soluble species at temperatures lower than in solid‐state reactions, leading to crystal formation of kinetically stable compounds. In this study, we demonstrate the effectiveness of mixed hydroxide and halide fluxes in synthesizing complex Sr/Ag/Se in mixed LiOH/LiCl. We have accessed a series of two‐dimensional Sr(Ag1−xLix)2Se2layered phases. With increased LiOH/LiCl ratio or reaction temperature, Li partially substituted Ag to form solid solutions of Sr(Ag1−xLix)2Se2withxup to 0.45. In addition, a new type of intergrowth compound [Sr3Se2][(Ag1−xLix)2Se2] was synthesized upon further reaction of Sr(Ag1−xLix)2Se2with SrSe. Both Sr(Ag1−xLix)2Se2and [Sr3Se2][(Ag1−xLix)2Se2] exhibit a direct band gap, which increases with increasing Li substitution (x). Therefore, the band gap of Sr(Ag1−xLix)2Se2can be precisely tuned via fine‐tuningxthat is controlled by only the flux ratio and temperature.

     
    more » « less
  3. Abstract

    Synthesizing solids in molten fluxes enables the rapid diffusion of soluble species at temperatures lower than in solid‐state reactions, leading to crystal formation of kinetically stable compounds. In this study, we demonstrate the effectiveness of mixed hydroxide and halide fluxes in synthesizing complex Sr/Ag/Se in mixed LiOH/LiCl. We have accessed a series of two‐dimensional Sr(Ag1−xLix)2Se2layered phases. With increased LiOH/LiCl ratio or reaction temperature, Li partially substituted Ag to form solid solutions of Sr(Ag1−xLix)2Se2withxup to 0.45. In addition, a new type of intergrowth compound [Sr3Se2][(Ag1−xLix)2Se2] was synthesized upon further reaction of Sr(Ag1−xLix)2Se2with SrSe. Both Sr(Ag1−xLix)2Se2and [Sr3Se2][(Ag1−xLix)2Se2] exhibit a direct band gap, which increases with increasing Li substitution (x). Therefore, the band gap of Sr(Ag1−xLix)2Se2can be precisely tuned via fine‐tuningxthat is controlled by only the flux ratio and temperature.

     
    more » « less