skip to main content

Title: Global 3D radiation hydrodynamic simulations of proto-Jupiter’s convective envelope
ABSTRACT The core accretion model of giant planet formation has been challenged by the discovery of recycling flows between the planetary envelope and the disc that can slow or stall envelope accretion. We carry out 3D radiation hydrodynamic simulations with an updated opacity compilation to model the proto-Jupiter’s envelope. To isolate the 3D effects of convection and recycling, we simulate both isolated spherical envelopes and envelopes embedded in discs. The envelopes are heated at given rates to achieve steady states, enabling comparisons with 1D models. We vary envelope properties to obtain both radiative and convective solutions. Using a passive scalar, we observe significant mass recycling on the orbital time-scale. For a radiative envelope, recycling can only penetrate from the disc surface until ∼0.1–0.2 planetary Hill radii, while for a convective envelope, the convective motion can ‘dredge up’ the deeper part of the envelope so that the entire convective envelope is recycled efficiently. This recycling, however, has only limited effects on the envelopes’ thermal structure. The radiative envelope embedded in the disc has identical structure as the isolated envelope. The convective envelope has a slightly higher density when it is embedded in the disc. We introduce a modified 1D approach which can fully reproduce our 3D simulations. With our updated opacity and 1D model, we recompute Jupiter’s envelope accretion with a 10 M⊕ core, and the time-scale to runaway accretion is shorter than the disc lifetime as in prior studies. Finally, we discuss the implications of the efficient recycling on the observed chemical abundances of the planetary atmosphere (especially for super-Earths and mini-Neptunes).  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
453 to 474
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    Despite many methods developed to find young massive planets in protoplanetary discs, it is challenging to directly detect low-mass planets that are embedded in discs. On the other hand, the core-accretion theory suggests that there could be a large population of embedded low-mass young planets at the Kelvin-Helmholtz (KH) contraction phase. We adopt both 1D models and 3D simulations to calculate the envelopes around low-mass cores (several to tens of M⊕) with different luminosities, and derive their thermal fluxes at radio wavelengths. We find that, when the background disc is optically thin at radio wavelengths, radio observations can see through the disc and probe the denser envelope within the planet’s Hill sphere. When the optically thin disc is observed with the resolution reaching one disc scale height, the radio thermal flux from the planetary envelope around a 10 M⊕ core is more than 10 per cent higher than the flux from the background disc. The emitting region can be extended and elongated. Finally, our model suggests that the au-scale clump at 52 au in the TW Hydrae disc revealed by ALMA is consistent with the envelope of an embedded 10–20 M⊕ planet, which can explain the detected flux, the spectral index dip, and the tentative spirals. The observation is also consistent with the planet undergoing pebble accretion. Future ALMA and ngVLA observations may directly reveal more such low-mass planets, enabling us to study core growth and even reconstruct the planet formation history using the embedded ‘protoplanet’ population.

    more » « less
  2. Abstract

    UsingAthena++, we perform 3D radiation-hydrodynamic calculations of the radiative breakout of the shock wave in the outer envelope of a red supergiant (RSG) that has suffered core collapse and will become a Type IIP supernova. The intrinsically 3D structure of the fully convective RSG envelope yields key differences in the brightness and duration of the shock breakout (SBO) from that predicted in a 1D stellar model. First, the lower-density “halo” of material outside of the traditional photosphere in 3D models leads to a shock breakout at lower densities than 1D models. This would prolong the duration of the shock breakout flash at any given location on the surface to ≈1–2 hr. However, we find that the even larger impact is the intrinsically 3D effect associated with large-scale fluctuations in density that cause the shock to break out at different radii at different times. This substantially prolongs the SBO duration to ≈3–6 hr and implies a diversity of radiative temperatures, as different patches across the stellar surface are at different stages of their radiative breakout and cooling at any given time. These predicted durations are in better agreement with existing observations of SBO. The longer durations lower the predicted luminosities by a factor of 3–10 (Lbol∼ 1044erg s−1), and we derive the new scalings of brightness and duration with explosion energies and stellar properties. These intrinsically 3D properties eliminate the possibility of using observed rise times to measure the stellar radius via light-travel time effects.

    more » « less
  3. null (Ed.)
    ABSTRACT (Sub)millimetre dust opacities are required for converting the observable dust continuum emission to the mass, but their values have long been uncertain, especially in discs around young stellar objects. We propose a method to constrain the opacity κν in edge-on discs from a characteristic optical depth τ0,ν, the density ρ0, and radius R0 at the disc outer edge through κν = τ0,ν/(ρ0R0), where τ0,ν is inferred from the shape of the observed flux along the major axis, ρ0 from gravitational stability considerations, and R0 from direct imaging. We applied the 1D semi-analytical model to the embedded, Class 0, HH 212 disc, which has high-resolution data in Atacama Large Millimetre/submillimetre Array (ALMA) bands 9, 7, 6, and 3 and Very Large Array Ka band (λ = 0.43, 0.85, 1.3, 2.9, and 9.1 mm). The modelling is extended to 2D through RADMC-3D radiative transfer calculations. We find a dust opacity of κν ≈ 1.9 × 10−2, 1.3 × 10−2, and 4.9 × 10−3 cm2 g−1 of gas and dust for ALMA bands 7, 6, and 3, respectively, with uncertainties dependent on the adopted stellar mass. The inferred opacities lend support to the widely used prescription κλ = 2.3 × 10−2(1.3mm/λ) cm2 g−1 . We inferred a temperature of ∼45 K at the disc outer edge that increases radially inwards. It is well above the sublimation temperatures of ices such as CO and N2, which supports the notion that the disc chemistry cannot be completely inherited from the protostellar envelope. 
    more » « less
  4. Abstract Increasing main-sequence stellar luminosity with stellar mass leads to the eventual dominance of radiation pressure in stellar-envelope hydrostatic balance. As the luminosity approaches the Eddington limit, additional instabilities (beyond conventional convection) can occur. These instabilities readily manifest in the outer envelopes of OB stars, where the opacity increase associated with iron yields density and gas-pressure inversions in 1D models. Additionally, recent photometric surveys (e.g., TESS) have detected excess broadband low-frequency variability in power spectra of OB star lightcurves, called stochastic low-frequency variability (SLFV). This motivates our novel 3D Athena++ radiation hydrodynamical (RHD) simulations of two 35 M ⊙ star envelopes (the outer ≈15% of the stellar radial extent), one on the zero-age main sequence and the other in the middle of the main sequence. Both models exhibit turbulent motion far above and below the conventional iron-opacity peak convection zone (FeCZ), obliterating any “quiet” part of the near-surface region and leading to velocities at the photosphere of 10–100 km s −1 , directly agreeing with spectroscopic data. Surface turbulence also produces SLFV in model lightcurves with amplitudes and power-law slopes that are strikingly similar to those of observed stars. The characteristic frequencies associated with SLFV in our models are comparable to the thermal time in the FeCZ (≈3–7 day −1 ). These ab initio simulations are directly validated by observations and, though more models are needed, we remain optimistic that 3D RHD models of main-sequence O-star envelopes exhibit SLFV originating from the FeCZ. 
    more » « less

    Stars form from the gravitational collapse of turbulent, magnetized molecular cloud cores. Our non-ideal MHD simulations reveal that the intrinsically anisotropic magnetic resistance to gravity during the core collapse naturally generates dense gravomagneto sheetlets within inner protostellar envelopes – disrupted versions of classical sheet-like pseudo-discs. They are embedded in a magnetically dominant background, where less dense materials flow along the local magnetic field lines and accumulate in the dense sheetlets. The sheetlets, which feed the disc predominantly through its upper and lower surfaces, are the primary channels for mass and angular momentum transfer from the envelope to the disc. The protostellar disc inherits a small fraction (up to 10 per cent) of the magnetic flux from the envelope, resulting in a disc-averaged net vertical field strength of 1–10 mG and a somewhat stronger toroidal field, potentially detectable through ALMA Zeeman observations. The inherited magnetic field from the envelope plays a dominant role in disc angular momentum evolution, enabling the formation of gravitationally stable discs in cases where the disc field is relatively well-coupled to the gas. Its influence remains significant even in marginally gravitationally unstable discs formed in the more magnetically diffusive cases, removing angular momentum at a rate comparable to or greater than that caused by spiral arms. The magnetically driven disc evolution is consistent with the apparent scarcity of prominent spirals capable of driving rapid accretion in deeply embedded protostellar discs. The dense gravomagneto sheetlets observed in our simulations may correspond to the ‘accretion streamers’ increasingly detected around protostars.

    more » « less