skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spontaneously broken subsystem symmetries
A bstract We investigate the spontaneous breaking of subsystem symmetries directly in the context of continuum field theories by calculating the correlation function of charged operators. Our methods confirm the lack of spontaneous symmetry breaking in some of the existing continuum field theories with subsystem symmetries, as had previously been established based on a careful analysis of the spectrum. We present some novel continuum field theory constructions that do exhibit spontaneous symmetry breaking whenever allowed by general principles. These interesting patterns of symmetry breaking occur despite the fact that all the theories we study are non-interacting.  more » « less
Award ID(s):
1914679
PAR ID:
10337804
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
3
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A spontaneous symmetry-breaking order is conventionally described by a tensor-product wavefunction of some few-body clusters; some standard examples include the simplest ferromagnets and valence bond solids. We discuss a type of symmetry-breaking orders, dubbed entanglement-enabled symmetry-breaking orders, which cannot be realized by any such tensor-product state. Given a symmetry breaking pattern, we propose a criterion to diagnose if the symmetry-breaking order is entanglement-enabled, by examining the compatibility between the symmetries and the tensor-product description. For concreteness, we present an infinite family of exactly solvable gapped models on one-dimensional lattices with nearest-neighbor interactions, whose ground states exhibit entanglement-enabled symmetry-breaking orders from a discrete symmetry breaking. In addition, these ground states have gapless edge modes protected by the unbroken symmetries. We also propose a construction to realize entanglement-enabled symmetry-breaking orders with spontaneously broken continuous symmetries. Under the unbroken symmetries, some of our examples can be viewed as symmetry-protected topological states that are beyond the conventional classifications. 
    more » « less
  2. One characteristic feature of many fractonic lattice models, and a defining property of the exotic field theories developed to describe them, are subsystem symmetries including a conservation of not just net electric charge but also electric dipole moments or charges living on submanifolds. So far all such theories were based on internal subsystem symmetries. In this work we generalize the notion of subsystem symmetries to system with subsystem spacetime symmetries with locally conserved energies. 
    more » « less
  3. A bstract We study generalized symmetries in a simplified arena in which the usual quantum field theories of physics are replaced with topological field theories and the smooth structure with which the symmetry groups of physics are usually endowed is forgotten. Doing so allows many questions of physical interest to be answered using the tools of homotopy theory. We study both global and gauge symmetries, as well as ‘t Hooft anomalies, which we show fall into one of two classes. Our approach also allows some insight into earlier work on symmetries (generalized or not) of topological field theories. 
    more » « less
  4. Transport coefficients of correlated electron systems are often useful for mapping hidden phases with distinct symmetries. Here we report a transport signature of spontaneous symmetry breaking in the magnetic Weyl semimetal cerium-aluminum-germanium (CeAlGe) system in the form of singular angular magnetoresistance (SAMR). This angular response exceeding 1000% per radian is confined along the high-symmetry axes with a full width at half maximum reaching less than 1° and is tunable via isoelectronic partial substitution of silicon for germanium. The SAMR phenomena is explained theoretically as a consequence of controllable high-resistance domain walls, arising from the breaking of magnetic point group symmetry strongly coupled to a nearly nodal electronic structure. This study indicates ingredients for engineering magnetic materials with high angular sensitivity by lattice and site symmetries. 
    more » « less
  5. A bstract We draw attention to a class of generalized global symmetries, which we call “Chern-Weil global symmetries,” that arise ubiquitously in gauge theories. The Noether currents of these Chern-Weil global symmetries are given by wedge products of gauge field strengths, such as F 2 ∧ H 3 and tr( $$ {F}_2^2 $$ F 2 2 ), and their conservation follows from Bianchi identities. As a result, they are not easy to break. However, it is widely believed that exact global symmetries are not allowed in a consistent theory of quantum gravity. As a result, any Chern-Weil global symmetry in a low-energy effective field theory must be either broken or gauged when the theory is coupled to gravity. In this paper, we explore the processes by which Chern-Weil symmetries may be broken or gauged in effective field theory and string theory. We will see that many familiar phenomena in string theory, such as axions, Chern-Simons terms, worldvolume degrees of freedom, and branes ending on or dissolving in other branes, can be interpreted as consequences of the absence of Chern-Weil symmetries in quantum gravity, suggesting that they might be general features of quantum gravity. We further discuss implications of breaking and gauging Chern-Weil symmetries for particle phenomenology and for boundary CFTs of AdS bulk theories. Chern-Weil global symmetries thus offer a unified framework for understanding many familiar aspects of quantum field theory and quantum gravity. 
    more » « less