A<sc>bstract</sc> Gauging is a powerful operation on symmetries in quantum field theory (QFT), as it connects distinct theories and also reveals hidden structures in a given theory. We initiate a systematic investigation of gauging discrete generalized symmetries in two-dimensional QFT. Such symmetries are described by topological defect lines (TDLs) which obey fusion rules that are non-invertible in general. Despite this seemingly exotic feature, all well-known properties in gauging invertible symmetries carry over to this general setting, which greatly enhances both the scope and the power of gauging. This is established by formulating generalized gauging in terms of topological interfaces between QFTs, which explains the physical picture for the mathematical concept of algebra objects and associated module categories over fusion categories that encapsulate the algebraic properties of generalized symmetries and their gaugings. This perspective also provides simple physical derivations of well-known mathematical theorems in category theory from basic axiomatic properties of QFT in the presence of such interfaces. We discuss a bootstrap-type analysis to classify such topological interfaces and thus the possible generalized gaugings and demonstrate the procedure in concrete examples of fusion categories. Moreover we present a number of examples to illustrate generalized gauging and its properties in concrete conformal field theories (CFTs). In particular, we identify the generalized orbifold groupoid that captures the structure of fusion between topological interfaces (equivalently sequential gaugings) as well as a plethora of new self-dualities in CFTs under generalized gaugings.
more »
« less
Generalized symmetries of topological field theories
A bstract We study generalized symmetries in a simplified arena in which the usual quantum field theories of physics are replaced with topological field theories and the smooth structure with which the symmetry groups of physics are usually endowed is forgotten. Doing so allows many questions of physical interest to be answered using the tools of homotopy theory. We study both global and gauge symmetries, as well as ‘t Hooft anomalies, which we show fall into one of two classes. Our approach also allows some insight into earlier work on symmetries (generalized or not) of topological field theories.
more »
« less
- Award ID(s):
- 2014071
- PAR ID:
- 10434482
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2023
- Issue:
- 3
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Generalized global symmetries, in particular non-invertible and categorical symmetries, have become a focal point in the recent study of quantum field theory (QFT). In this paper, we investigate aspects of symmetry topological field theories (SymTFTs) and anomalies of non-invertible symmetries for 2D QFTs from a string theory perspective. Our primary focus is on an infinite class of 2D QFTs engineered on D1-branes probing toric Calabi-Yau 4-fold singularities. We derive 3D SymTFTs from the topological sector of IIB supergravity and discuss the resulting 2D QFTs, which can be intrinsically relative or absolute. For intrinsically relative QFTs, we propose a sufficient condition for them to exist. For absolute QFTs, we show that they exhibit non-invertible symmetries with an elegant brane origin. Furthermore, we find that these non-invertible symmetries can suffer from anomalies, which we discuss from a top-down perspective. Explicit examples are provided, including theories for including theories for Y(p,k)(ℙ2), Y(2,0)(ℙ1×ℙ1), and ℂ4/ℤ4 geometries.more » « less
-
A bstract We study effective field theories (EFTs) enjoying (maximal) biform symmetries. These are defined by the presence of a conserved (electric) current that has the symmetries of a Young tableau with two columns of equal length. When these theories also have a topological (magnetic) biform current, its conservation law is anomalous. We go on to show that this mixed anomaly uniquely fixes the two-point function between the electric and magnetic currents. We then perform a Källén-Lehmann spectral decomposition of the current-current correlator, proving that there is a massless mode in the spectrum, whose masslessness is protected by the anomaly. Furthermore, the anomaly gives rise to a universal form of the EFT whose most relevant term — which resembles the linear Einstein action — dominates the infrared physics. As applications of this general formalism, we study the theories of a Galileon superfluid and linearized gravity. Thus, one can view the masslessness of the graviton as being protected by the anomalous biform symmetries. The associated EFT provides an organizing principle for gravity at low energies in terms of physical symmetries, and allows interactions consistent with linearized diffeomorphism invariance. These theories are not ultraviolet-complete — the relevant symmetries can be viewed as emergent — nor do they include the nonlinearities necessary to make them fully diffeomorphism invariant, so there is no contradiction with the expectation that quantum gravity cannot have any global symmetries.more » « less
-
A long-standing problem in the study of topological phases of matter has been to understand the types of fractional topological insulator (FTI) phases possible in 3+1 dimensions. Unlike ordinary topological insulators of free fermions, FTI phases are characterized by fractional 𝜃-angles,long-range entanglement, and fractionalization. Starting from a simple family of ℤ_N lattice gauge theories due to Cardy and Rabinovici, we develop a class of FTI phases based on the physical mechanism of oblique confinement and the modern language of generalized global symmetries. We dub these phases oblique topological insulators. Oblique TIs arise when dyons—bound states of electric charges and monopoles—condense, leading to FTI phases characterized by topological order, emergent one-forms symmetries, and gapped boundary states not realizable in 2+1-D alone.Based on the lattice gauge theory, we present continuum topological quantum field theories (TQFTs) for oblique TI phases involving fluctuating one-form and two-form gauge fields. We show explicitly that these TQFTs capture both the generalized global symmetries and topological orders seen in the lattice gauge theory. We also demonstrate that these theories exhibit a universal “generalized magneto-electric effect” in the presence of two-form background gauge fields. Moreover,we characterize the possible boundary topological orders of oblique TIs,finding a new set of boundary states not studied previously for these kinds of TQFTs.more » « less
-
A<sc>bstract</sc> With the use of mathematical techniques of tropical geometry, it was shown by Mikhalkin some twenty years ago that certain Gromov-Witten invariants associated with topological quantum field theories of pseudoholomorphic maps can be computed by going to the tropical limit of the geometries in question. Here we examine this phenomenon from the physics perspective of topological quantum field theory in the path integral representation, beginning with the case of the topological sigma model before coupling it to topological gravity. We identify the tropicalization of the localization equations, investigate its geometry and symmetries, and study the theory and its observables using the standard cohomological BRST methods. We find that the worldsheet theory exhibits a nonrelativistic structure, similar to theories of the Lifshitz type. Its path-integral formulation does not require a worldsheet complex structure; instead, it is based on a worldsheet foliation structure.more » « less
An official website of the United States government

