skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Entanglement-enabled symmetry-breaking orders
A spontaneous symmetry-breaking order is conventionally described by a tensor-product wavefunction of some few-body clusters; some standard examples include the simplest ferromagnets and valence bond solids. We discuss a type of symmetry-breaking orders, dubbed entanglement-enabled symmetry-breaking orders, which cannot be realized by any such tensor-product state. Given a symmetry breaking pattern, we propose a criterion to diagnose if the symmetry-breaking order is entanglement-enabled, by examining the compatibility between the symmetries and the tensor-product description. For concreteness, we present an infinite family of exactly solvable gapped models on one-dimensional lattices with nearest-neighbor interactions, whose ground states exhibit entanglement-enabled symmetry-breaking orders from a discrete symmetry breaking. In addition, these ground states have gapless edge modes protected by the unbroken symmetries. We also propose a construction to realize entanglement-enabled symmetry-breaking orders with spontaneously broken continuous symmetries. Under the unbroken symmetries, some of our examples can be viewed as symmetry-protected topological states that are beyond the conventional classifications.  more » « less
Award ID(s):
2120757
PAR ID:
10592845
Author(s) / Creator(s):
;
Publisher / Repository:
SciPost Physics Core
Date Published:
Journal Name:
SciPost Physics Core
Volume:
7
Issue:
1
ISSN:
2666-9366
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Topologically ordered phases in 2 + 1 dimensions are generally characterized by three mutually related features: fractionalized (anyonic) excitations, topological entanglement entropy, and robust ground state degeneracy that does not require symmetry protection or spontaneous symmetry breaking. Such a degeneracy is known as topological degeneracy and can be usually seen under the periodic boundary condition regardless of the choice of the system sizes L1 and L2 in each direction. In this work, we introduce a family of extensions of the Kitaev toric code to N level spins (N ≥ 2). The model realizes topologically ordered phases or symmetry-protected topological phases depending on the parameters in the model. The most remarkable feature of topologically ordered phases is that the ground state may be unique, depending on L1 and L2, despite that the translation symmetry of the model remains unbroken. Nonetheless, the topological entanglement entropy takes the nontrivial value. We argue that this behavior originates from the nontrivial action of translations permuting anyon species. 
    more » « less
  2. Preparing long-range entangled states poses significant challenges for near-term quantum devices. It is known that measurement and feedback (MF) can aid this task by allowing the preparation of certain paradigmatic long-range entangled states with only constant circuit depth. Here, we systematically explore the structure of states that can be prepared using constant-depth local circuits and a single MF round. Using the framework of tensor networks, the preparability under MF translates to tensor symmetries. We detail the structure of matrix-product states (MPSs) and projected entangled-pair states (PEPSs) that can be prepared using MF, revealing the coexistence of Clifford-like properties and magic. In one dimension, we show that states with Abelian-symmetry-protected topological order are a restricted class of MF-preparable states. In two dimensions, we parametrize a subset of states with Abelian topological order that are MF preparable. Finally, we discuss the analogous implementation of operators via MF, providing a structural theorem that connects to the well-known Clifford teleportation. Published by the American Physical Society2024 
    more » « less
  3. Despite growing interest in beyond-group symmetries in quantum condensed matter systems, there are relatively few microscopic lattice models explicitly realizing these symmetries, and many phenomena have yet to be studied at the microscopic level. We introduce a one-dimensional stabilizer Hamiltonian composed of group-based Pauli operators whose ground state is a G × Rep ( G ) -symmetric state: the G -cluster state introduced by Brell []. We show that this state lies in a symmetry-protected topological (SPT) phase protected by G × Rep ( G ) symmetry, distinct from the symmetric product state by a duality argument. We identify several signatures of SPT order, namely, protected edge modes, string order parameters, and topological response. We discuss how G -cluster states may be used as a universal resource for measurement-based quantum computation, explicitly working out the case where G is a semidirect product of Abelian groups. Published by the American Physical Society2025 
    more » « less
  4. We investigate the interplay of generalized global symmetries in 2+1 dimensions by introducing a lattice model that couples a ZN clock model to a ZN gauge theory via a topological interaction. This coupling binds the charges of one symmetry to the disorder operators of the other, and when these composite objects condense, they give rise to emergent generalized symmetries with mixed ’t Hooft anomalies. These anomalies result in phases with ordinary symmetry breaking, topological order, and symmetry-protected topological (SPT) order, where the different types of order are not independent but intimately related. We further explore the gapped boundary states of these exotic phases and develop theories for phase transitions between them. Additionally, we extend our lattice model to incorporate a non-invertible global symmetry, which can be spontaneously broken, leading to domain walls with non-trivial fusion rules. 
    more » « less
  5. We discuss the exact non-invertible Kramers-Wannier symmetry of 1+1d lattice models on a tensor product Hilbert space of qubits. This symmetry is associated with a topological defect and a conserved operator, and the latter can be presented as a matrix product operator. Importantly, unlike its continuum counterpart, the symmetry algebra involves lattice translations. Consequently, it is not described by a fusion category. In the presence of this defect, the symmetry algebra involving parity/time-reversal is realized projectively, which is reminiscent of an anomaly. Different Hamiltonians with the same lattice non-invertible symmetry can flow in their continuum limits to infinitely many different fusion categories (with different Frobenius-Schur indicators), including, as a special case, the Ising CFT. The non-invertible symmetry leads to a constraint similar to that of Lieb-Schultz-Mattis, implying that the system cannot have a unique gapped ground state. It is either in a gapless phase or in a gapped phase with three (or a multiple of three) ground states, associated with the spontaneous breaking of the lattice non-invertible symmetry. 
    more » « less