skip to main content


Title: Identifying Lensed Quasars and Measuring Their Time Delays from Unresolved Light Curves
Abstract Identifying multiply imaged quasars is challenging owing to their low density in the sky and the limited angular resolution of wide-field surveys. We show that multiply imaged quasars can be identified using unresolved light curves, without assuming a light-curve template or any prior information. After describing our method, we show, using simulations, that it can attain high precision and recall when we consider high-quality data with negligible noise well below the variability of the light curves. As the noise level increases to that of the Zwicky Transient Facility telescope, we find that precision can remain close to 100% while recall drops to ∼60%. We also consider some examples from Time Delay Challenge 1 and demonstrate that the time delays can be accurately recovered from the joint light-curve data in realistic observational scenarios. We further demonstrate our method by applying it to publicly available COSMOGRAIL data of the observed lensed quasar SDSS J1226−0006. We identify the system as a lensed quasar based on the unresolved light curve and estimate a time delay in good agreement with the one measured by COSMOGRAIL using the individual image light curves. The technique shows great potential to identify lensed quasars in wide-field imaging surveys, especially the soon-to-be-commissioned Vera Rubin Observatory.  more » « less
Award ID(s):
1906976
NSF-PAR ID:
10337833
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
927
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
191
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Astrometric precision and knowledge of the point spread function are key ingredients for a wide range of astrophysical studies including time-delay cosmography in which strongly lensed quasar systems are used to determine the Hubble constant and other cosmological parameters. Astrometric uncertainty on the positions of the multiply-imaged point sources contributes to the overall uncertainty in inferred distances and therefore the Hubble constant. Similarly, knowledge of the wings of the point spread function is necessary to disentangle light from the background sources and the foreground deflector. We analyse adaptive optics (AO) images of the strong lens system J 0659+1629 obtained with the W. M. Keck Observatory using the laser guide star AO system. We show that by using a reconstructed point spread function we can (i) obtain astrometric precision of <1 mas, which is more than sufficient for time-delay cosmography; and (ii) subtract all point-like images resulting in residuals consistent with the noise level. The method we have developed is not limited to strong lensing, and is generally applicable to a wide range of scientific cases that have multiple point sources nearby. 
    more » « less
  2. ABSTRACT

    Of the hundreds of z ≳ 6 quasars discovered to date, only one is known to be gravitationally lensed, despite the high lensing optical depth expected at z ≳ 6. High-redshift quasars are typically identified in large-scale surveys by applying strict photometric selection criteria, in particular by imposing non-detections in bands blueward of the Lyman-α line. Such procedures by design prohibit the discovery of lensed quasars, as the lensing foreground galaxy would contaminate the photometry of the quasar. We present a novel quasar selection methodology, applying contrastive learning (an unsupervised machine learning technique) to Dark Energy Survey imaging data. We describe the use of this technique to train a neural network which isolates an ‘island’ of 11 sources, of which seven are known z ∼ 6 quasars. Of the remaining four, three are newly discovered quasars (J0109−5424, z = 6.07; J0122−4609, z = 5.99; J0603−3923, z = 5.94), as confirmed by follow-up and archival spectroscopy, implying a 91 per cent efficiency for our novel selection method; the final object on the island is a brown dwarf. In one case (J0109−5424), emission below the Lyman limit unambiguously indicates the presence of a foreground source, though high-resolution optical/near-infrared imaging is still needed to confirm the quasar’s lensed (multiply imaged) nature. Detection in the g band has led this quasar to escape selection by traditional colour cuts. Our findings demonstrate that machine learning techniques can thus play a key role in unveiling populations of quasars missed by traditional methods.

     
    more » « less
  3. Abstract

    The observed lensed fraction of high-redshift quasars (∼0.2%) is significantly lower than previous theoretical predictions (≳4%). We revisit the lensed fraction of high-redshift quasars predicted by theoretical models, where we adopt recent measurements of galaxy velocity dispersion functions (VDFs) and explore a wide range of quasar luminosity function (QLF) parameters. We use both analytical methods and mock catalogs, which give consistent results. For ordinary QLF parameters and the depth of current high-redshift quasar surveys (mz≲ 22), our model suggests a multiply imaged fraction ofFmulti∼ 0.4%–0.8%. The predicted lensed fraction is ∼1%–6% for the brightestzs∼ 6 quasars (mz≲ 19), depending on the QLF. The systematic uncertainties of the predicted lensed fraction in previous models can be as large as 2–4 times and are dominated by the VDF. Applying VDFs from recent measurements decreases the predicted lensed fraction and relieves the tension between observations and theoretical models. Given the depth of current imaging surveys, there are ∼15 lensed quasars atzs> 5.5 detectable over the sky. Upcoming sky surveys like the Legacy Survey of Space and Time survey and the Euclid survey will find several tens of lensed quasars at this redshift range.

     
    more » « less
  4. null (Ed.)
    ABSTRACT Strongly lensed explosive transients such as supernovae, gamma-ray bursts, fast radio bursts, and gravitational waves are very promising tools to determine the Hubble constant (H0) in the near future in addition to strongly lensed quasars. In this work, we show that the transient nature of the point source provides an advantage over quasars: The lensed host galaxy can be observed before or after the transient’s appearance. Therefore, the lens model can be derived from images free of contamination from bright point sources. We quantify this advantage by comparing the precision of a lens model obtained from the same lenses with and without point sources. Based on Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations with the same sets of lensing parameters, we simulate realistic mock data sets of 48 quasar lensing systems (i.e. adding AGN in the galaxy centre) and 48 galaxy–galaxy lensing systems (assuming the transient source is not visible but the time delay and image positions have been or will be measured). We then model the images and compare the inferences of the lens model parameters and H0. We find that the precision of the lens models (in terms of the deflector mass slope) is better by a factor of 4.1 for the sample without lensed point sources, resulting in an increase of H0 precision by a factor of 2.9. The opportunity to observe the lens systems without the transient point sources provides an additional advantage for time-delay cosmography over lensed quasars. It facilitates the determination of higher signal-to-noise stellar kinematics of the main deflector, and thus its mass density profile, which, in turn plays a key role in breaking the mass-sheet degeneracy and constraining H0. 
    more » « less
  5. ABSTRACT We report the results of the STRong lensing Insights into the Dark Energy Survey (STRIDES) follow-up campaign of the late 2017/early 2018 season. We obtained spectra of 65 lensed quasar candidates with ESO Faint Object Spectrograph and Camera 2 on the NTT and Echellette Spectrograph and Imager on Keck, confirming 10 new lensed quasars and 10 quasar pairs. Eight lensed quasars are doubly imaged with source redshifts between 0.99 and 2.90, one is triply imaged (DESJ0345−2545, z = 1.68), and one is quadruply imaged (quad: DESJ0053−2012, z = 3.8). Singular isothermal ellipsoid models for the doubles, based on high-resolution imaging from SAMI on Southern Astrophysical Research Telescope or Near InfraRed Camera 2 on Keck, give total magnifications between 3.2 and 5.6, and Einstein radii between 0.49 and 1.97 arcsec. After spectroscopic follow-up, we extract multi-epoch grizY photometry of confirmed lensed quasars and contaminant quasar + star pairs from DES data using parametric multiband modelling, and compare variability in each system’s components. By measuring the reduced χ2 associated with fitting all epochs to the same magnitude, we find a simple cut on the less variable component that retains all confirmed lensed quasars, while removing 94 per cent of contaminant systems. Based on our spectroscopic follow-up, this variability information improves selection of lensed quasars and quasar pairs from 34-45 per cent to 51–70 per cent, with most remaining contaminants being star-forming galaxies. Using mock lensed quasar light curves we demonstrate that selection based only on variability will over-represent the quad fraction by 10 per cent over a complete DES magnitude-limited sample, explained by the magnification bias and hence lower luminosity/more variable sources in quads. 
    more » « less