skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Revisiting the Lensed Fraction of High-redshift Quasars
Abstract The observed lensed fraction of high-redshift quasars (∼0.2%) is significantly lower than previous theoretical predictions (≳4%). We revisit the lensed fraction of high-redshift quasars predicted by theoretical models, where we adopt recent measurements of galaxy velocity dispersion functions (VDFs) and explore a wide range of quasar luminosity function (QLF) parameters. We use both analytical methods and mock catalogs, which give consistent results. For ordinary QLF parameters and the depth of current high-redshift quasar surveys (mz≲ 22), our model suggests a multiply imaged fraction ofFmulti∼ 0.4%–0.8%. The predicted lensed fraction is ∼1%–6% for the brightestzs∼ 6 quasars (mz≲ 19), depending on the QLF. The systematic uncertainties of the predicted lensed fraction in previous models can be as large as 2–4 times and are dominated by the VDF. Applying VDFs from recent measurements decreases the predicted lensed fraction and relieves the tension between observations and theoretical models. Given the depth of current imaging surveys, there are ∼15 lensed quasars atzs> 5.5 detectable over the sky. Upcoming sky surveys like the Legacy Survey of Space and Time survey and the Euclid survey will find several tens of lensed quasars at this redshift range.  more » « less
Award ID(s):
1908284
PAR ID:
10362260
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
925
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 169
Size(s):
Article No. 169
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a mock catalog of gravitationally-lensed quasars atzqso< 7.5 with simulated images for the Rubin Observatory Legacy Survey of Space and Time (LSST). We adopt recent measurements of quasar-luminosity functions to model the quasar population, and use the CosmoDC2 mock galaxy catalog to model the deflector galaxies, which successfully reproduces the observed galaxy-velocity dispersion functions up tozd∼ 1.5. The mock catalog is highly complete for lensed quasars with Einstein radiusθE> 0.″07 and quasar absolute magnitudeMi< − 20. We estimate that there are ∼103lensed quasars discoverable in current imaging surveys, and LSST will increase this number to ∼ 2.4 × 103. Most of the lensed quasars have image separation Δθ> 0.″5, which will at least be marginally resolved in LSST images with seeing of ∼0.″7. There will be ∼200 quadruply-lensed quasars discoverable in the LSST. The fraction of quad lenses among all discoverable lensed quasars is about ∼10%–15%, and this fraction decreases with survey depth. This mock catalog shows a large diversity in the observational features of lensed quasars, in terms of lensing separation and quasar-to-deflector flux ratio. We discuss possible strategies for a complete search of lensed quasars in the LSST era. 
    more » « less
  2. Abstract The identification of bright quasars atz≳ 6 enables detailed studies of supermassive black holes, massive galaxies, structure formation, and the state of the intergalactic medium within the first billion years after the Big Bang. We present the spectroscopic confirmation of 55 quasars at redshifts 5.6 <z< 6.5 and UV magnitudes −24.5 <M1450< −28.5 identified in the optical Pan-STARRS1 and near-IR VIKING surveys (48 and 7, respectively). Five of these quasars have independently been discovered in other studies. The quasar sample shows an extensive range of physical properties, including 17 objects with weak emission lines, 10 broad absorption line quasars, and 5 objects with strong radio emission (radio-loud quasars). There are also a few notable sources in the sample, including a blazar candidate atz= 6.23, a likely gravitationally lensed quasar atz= 6.41, and az= 5.84 quasar in the outskirts of the nearby (D∼ 3 Mpc) spiral galaxy M81. The blazar candidate remains undetected in NOEMA observations of the [Cii]and underlying emission, implying a star formation rate <30–70Myr−1. A significant fraction of the quasars presented here lies at the foundation of the first measurement of thez∼ 6 quasar luminosity function from Pan-STARRS1 (introduced in a companion paper). These quasars will enable further studies of the high-redshift quasar population with current and future facilities. 
    more » « less
  3. Abstract We present a catalog of 1.4 million photometrically selected quasar candidates in the southern hemisphere over the ∼5000 deg2Dark Energy Survey (DES) wide survey area. We combine optical photometry from the DES second data release (DR2) with available near-infrared (NIR) and the all-sky unWISE mid-infrared photometry in the selection. We build models of quasars, galaxies, and stars with multivariate skew-tdistributions in the multidimensional space of relative fluxes as functions of redshift (or color for stars) and magnitude. Our selection algorithm assigns probabilities for quasars, galaxies, and stars and simultaneously calculates photometric redshifts (photo-z) for quasar and galaxy candidates. Benchmarking on spectroscopically confirmed objects, we successfully classify (with photometry) 94.7% of quasars, 99.3% of galaxies, and 96.3% of stars when all IR bands (NIRYJHKand WISE W1W2) are available. The classification and photo-zregression success rates decrease when fewer bands are available. Our quasar (galaxy) photo-zquality, defined as the fraction of objects with the difference between the photo-z zpand the spectroscopic redshiftzs, ∣Δz∣ ≡ ∣zs−zp∣/(1 +zs) ≤ 0.1, is 92.2% (98.1%) when all IR bands are available, decreasing to 72.2% (90.0%) using optical DES data only. Our photometric quasar catalog achieves an estimated completeness of 89% and purity of 79% atr< 21.5 (0.68 million quasar candidates), with reduced completeness and purity at 21.5 <r≲ 24. Among the 1.4 million quasar candidates, 87,857 have existing spectra, and 84,978 (96.7%) of them are spectroscopically confirmed quasars. Finally, we provide quasar, galaxy, and star probabilities for all (0.69 billion) photometric sources in the DES DR2 coadded photometric catalog. 
    more » « less
  4. Abstract We present the first results from a new survey for high-redshift (z≳ 5) gravitationally lensed quasars and close quasar pairs. We carry out candidate selection based on the colors and shapes of objects in public imaging surveys, then conduct follow-up observations to confirm the nature of high-priority candidates. In this paper, we report the discoveries of J0025–0145 (z= 5.07), which we identify as an intermediately lensed quasar, and J2329–0522 (z= 4.85), which is a kiloparsec-scale close quasar pair. The Hubble Space Telescope (HST) image of J0025–0145 shows a foreground lensing galaxy located 0.″6 away from the quasar. However, J0025–0145 does not exhibit multiple lensed images of the quasar, and we identify J0025–0145 as an intermediate lensing system (a lensing system that is not multiply imaged but has a significant magnification). The spectrum of J0025–0145 implies an extreme Eddington ratio if the quasar luminosity is intrinsic, which could be explained by a large lensing magnification. The HST image of J0025–0145 also indicates a tentative detection of the quasar host galaxy in the rest-frame UV, illustrating the power of lensing magnification and distortion in studies of high-redshift quasar host galaxies. Object J2329–0522 consists of two resolved components with significantly different spectral properties and a lack of lensing galaxy detection under subarcsecond seeing. We identify it as a close quasar pair, which is the highest confirmed kiloparsec-scale quasar pair to date. We also report four lensed quasars and quasar pairs at 2 <z< 4 and discuss possible improvements to our survey strategy. 
    more » « less
  5. Abstract About 70 luminous quasars discovered atz> 6.5 are strongly biased toward the bright end, thus not providing a comprehensive view of quasar abundance beyond the cosmic dawn. We present the predicted results of the Roman/Rubin high-redshift quasar survey, yielding 3 times more, 2–4 mag deeper quasar samples, probing high-redshift quasars across a broad range of luminosities, especially faint quasars atLbol∼ 1010LorM1450∼ −22, which are currently poorly explored. We include high-zquasars, galactic dwarfs, and low-zcompact galaxies with similar colors as quasar candidates. We create mock catalogs based on population models to evaluate selection completeness and efficiency. We utilize the classical color dropout method in thezandYbands to select primary quasar candidates, followed up with the Bayesian selection method to identify quasars. We show that overall selection completeness >80% and efficiency ∼10% at 6.5 <z< 9, with 180 quasars atz> 6.5, 20 atz> 7.5, and 2 atz> 8.5. The quasar yields depend sensitively on the assumed quasar luminosity shape and redshift evolution. Brown dwarf rejection through proper motion up to 50% can be made for stars brighter than 25 mag, low-zgalaxies dominate at fainter magnitude. Our results show that Roman/Rubin are able to discover a statistical sample of the earliest and faintest quasars in the Universe. The new valuable data sets are worth follow-up studies with JWST and Extremely Large Telescopes to determine the quasar luminosity function faint end slope and constraint the supermassive black holes growth in the early Universe. 
    more » « less